Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3229–3248 | Cite as

Handling complexity in biological interactions

Allostery and cooperativity in proteins
  • Sonia Vega
  • Olga AbianEmail author
  • Adrian Velazquez-CampoyEmail author
Article
  • 131 Downloads

Abstract

Biological processes rely on interactions between many binding partners. Binding results in the modulation of the conformational landscape of the interacting molecules, a phenomenon rooted in folding and binding cooperativity underlying the allosteric functional regulation of biomacromolecules. The conformational equilibrium of a protein and the binding equilibria of different interacting and cooperative ligands are coupled giving rise to a complex scenario in which protein function can be finely tuned and modulated. Binding cooperativity and allostery add additional levels of complexity in protein function regulation. Here we will review some important concepts associated with binding, cooperativity and allostery in protein interactions, illustrated with several representative protein-dependent biological systems related to drug discovery and physiological mechanisms characterization and studied by isothermal titration calorimetry.

Keywords

Allostery Interaction cooperativity Ligand binding Binding polynomial Conformational landscape Biochemical linkage 

Notes

Acknowledgements

This work was supported by Miguel Servet Program from Instituto de Salud Carlos III (CPII13/00017 to OA); Fondo de Investigaciones Sanitarias from Instituto de Salud Carlos III, and European Union (ERDF/ESF, ‘Investing in your future’) (PI15/00663 and PI18/00349 to OA); Spanish Ministry of Economy and Competitiveness (BFU2016-78232-P to AVC); Diputación General de Aragón (Protein Targets and Bioactive Compounds Group E45_17R to AVC, and Digestive Pathology Group B25_17R to OA); and Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Wyman J, Gill SJ. Binding and linkage: functional chemistry of biological macromolecules. Mill Valley: University Science Books; 1990.Google Scholar
  2. 2.
    Schellman JA. Macromolecular binding. Biopolymers. 1975;14:999–1018.Google Scholar
  3. 3.
    Wyman J. The binding potential, a neglected linkage concept. J Mol Biol. 1965;11:631–44.PubMedGoogle Scholar
  4. 4.
    Wyman J. Linked functions and reciprocal effects in hemoglobin—A second look. Adv Protein Chem. 1964;19:223–86.PubMedGoogle Scholar
  5. 5.
    Velazquez-Campoy A. Geometric features of the Wiseman isotherm in isothermal titration calorimetry. J Thermal Anal Calorim. 2015;122:1477–83.Google Scholar
  6. 6.
    Velazquez-Campoy A. Allostery and cooperative interactions in proteins assessed by isothermal titration calorimetry. In: Bastos M, editor. Biocalorimetry—foundations and contemporary approaches. Boca Raton: CRC Press; 2016. p. 223–46.Google Scholar
  7. 7.
    Vega S, Abian A, Velazquez-Campoy A. A unified framework based on the binding polynomial for characterizing biological systems by isothermal titration calorimetry. Methods. 2015;76:99–115.PubMedGoogle Scholar
  8. 8.
    Freire E, Schön A, Velazquez-Campoy A. Isothermal titration calorimetry: general formalism using binding polynomials. Methods Enzymol. 2009;455:127–55.PubMedGoogle Scholar
  9. 9.
    Bohr C, Hasselbalch K, Krogh A. Ueber einen in biologischer beziehung wichtigen einfluss, den die kohlensäurespannung des blutes auf dessen sauerstoffbindung übt. Skand Archiv Physiol (Acta Physiol). 1904;16:402–12.Google Scholar
  10. 10.
    Monod J, Wyman J, Changeux JP. On the nature of allosteric transitions a plausible model. J Mol Biol. 1965;12:88–118.PubMedGoogle Scholar
  11. 11.
    Monod J, Changeux JP, Jacob F. Allosteric proteins and cellular control systems. J Mol Biol. 1963;6:306–29.PubMedGoogle Scholar
  12. 12.
    Gunasekaran K, Ma B, Nussinov R. ls allostery an intrinsic property of all dynamic proteins? Proteins. 2004;57:433–43.PubMedGoogle Scholar
  13. 13.
    Eftink M, Biltonen RL. Thermodynamics of interacting biological systems. Beezer AE, Biological calorimetry”. London: Academic Press; 1980. p. 343–412.Google Scholar
  14. 14.
    Courter JR, Madani N, Sodroski J, Schön A, Freire E, Kwong PD, Hendrickson WA, Chaiken IM, LaLonde JM, Smith AB 3rd. Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: conversion of a viral entry agonist to an antagonist. Acc Chem Res. 2014;47:1228–37.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Williams R, Holyoak T, McDonald G, Gui C, Fenton AW. Differentiating a ligand’s chemical requirements for allosteric interactions from those for protein binding. Phenylalanine inhibition of pyruvate kinase. Biochemistry. 2006;45:5421–9.PubMedGoogle Scholar
  16. 16.
    Jobichen C, Fernandis AZ, Velazquez-Campoy A, Leung KY, Mok YK, Wenk MR, Sivaraman J. Identification and characterization of the lipid-binding property of GrlR, a locus of enterocyte effacement regulator. Biochem J. 2009;13(420):191–9.Google Scholar
  17. 17.
    Rodriguez-Cardenas A, Rojas AL, Conde-Gimenez M, Velazquez-Campoy A, Hurtado-Guerrero R, Sancho J. Streptococcus pneumoniae TIGR4 flavodoxin: structural and biophysical characterization of a novel drug target. PLoS ONE. 2016;11:e0161020.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Cremades N, Velazquez-Campoy A, Freire E, Sancho J. The flavodoxin from Helicobacter pylori: structural determinants of thermostability and FMN cofactor binding. Biochemistry. 2008;47:627–39.PubMedGoogle Scholar
  19. 19.
    Irun MP, Garcia-Mira MM, Sanchez-Ruiz JM, Sancho J. Native hydrogen bonds in a molten globule: the apoflavodoxin thermal intermediate. J Mol Biol. 2001;306:877–88.PubMedGoogle Scholar
  20. 20.
    Wyman J. Heme proteins. Adv Protein Chem. 1948;4:407–531.PubMedGoogle Scholar
  21. 21.
    Wyman J. Allosteric linkage. J Am Chem Soc. 1967;89:2202–18.Google Scholar
  22. 22.
    Koshland DE Jr, Nemethy G, Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 1966;5:365–85.PubMedGoogle Scholar
  23. 23.
    Di Cera E, Gill SJ, Wyman J. Binding capacity: cooperativity and buffering in biopolymers. Proc Natl Acad Sci USA. 1988;85:449–52.PubMedGoogle Scholar
  24. 24.
    Ji Y, Postis VL, Wang Y, Bartlam M, Goldman A. Transport mechanism of a glutamate transporter homologue GltPh. Biochem Soc Trans. 2016;44:898–904.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Groeneveld M, Slotboom DJ. Na(+): aspartate coupling stoichiometry in the glutamate transporter homologue Glt(Ph). Biochemistry. 2010;49:3511–3.PubMedGoogle Scholar
  26. 26.
    Boudker O, SeCheol O. Isothermal titration calorimetry of ion-coupled membrane transporters. Methods. 2015;76:171–82.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kohl NE, Emini EA, Schleif WA, Davis LJ, Heimbach JC, Dixon RA, Scolnick EM, Sigal IS. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci USA. 1988;85:4686–90.PubMedGoogle Scholar
  28. 28.
    Brik A, Wong C-H. HIV-1 protease: mechanism and drug discovery. Org Biomol Chem. 2003;1:5–14.PubMedGoogle Scholar
  29. 29.
    Velazquez-Campoy A, Luque I, Todd MJ, Milutinovich M, Kiso Y, Freire E. Thermodynamic dissection of the binding energetics of KNI-272, a potent HIV-1 protease inhibitor. Protein Sci. 2000;9:1801–9.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Baker BM, Murphy KP. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys J. 1996;71:2049–55.PubMedGoogle Scholar
  31. 31.
    Krishnamurthy R. Role of pKa of nucleobases in the origins of chemical evolution. Acc Chem Res. 2012;45:2035–44.PubMedGoogle Scholar
  32. 32.
    Ross D, Siegel D. Functions of NQO1 in cellular protection and CoQ10 metabolism and its potential role as a redox sensitive molecular switch. Front Physiol. 2017;8:595.PubMedGoogle Scholar
  33. 33.
    Pey AL, Megarity CF, Timson DJ. FAD binding overcomes defects in activity and stability displayed by cancer-associated variants of human NQO1. Biochim Biophys Acta—Mol Basis Dis. 2014;1842:2163–73.Google Scholar
  34. 34.
    Claveria-Gimeno R, Velazquez-Campoy A, Pey AL. Thermodynamics of cooperative binding of FAD to human NQO1: implications to understanding cofactor-dependent function and stability of the flavoproteome. Arch Biochem Biophys. 2017;636:17–27.PubMedGoogle Scholar
  35. 35.
    Lee AL, Sapienza PJ. Thermodynamic and NMR assessment of ligand cooperativity and intersubunit communication in symmetric dimers: application to thymidylate synthase. Front Mol Biosci. 2018;5:47.PubMedGoogle Scholar
  36. 36.
    Tomei L, Failla C, Santolini E, De Francesco R, La Monica N. NS3 is a serine protease required for processing of hepatitis C virus polyprotein. J Virol. 1993;67:4017–26.PubMedGoogle Scholar
  37. 37.
    Kwong AD, Kim JL, Rao G, Lipovsek D, Raybuck SA. Hepatitis C virus NS3/4A protease. Antivir Res. 1998;40:1–18.PubMedGoogle Scholar
  38. 38.
    Martinez-Julvez M, Abian O, Vega S, Medina M, Velazquez-Campoy A. Studying the allosteric energy cycle by isothermal titration calorimetry. Methods Mol Biol. 2012;796:53–70.PubMedGoogle Scholar
  39. 39.
    Martinez-Julvez M, Medina M, Velazquez-Campoy A. Binding thermodynamics of ferredoxin:NADP + reductase: two different protein substrates and one energetics. Biophys J. 2009;96:4966–75.PubMedGoogle Scholar
  40. 40.
    Velazquez-Campoy A, Goñi G, Peregrina JR, Medina M. Exact analysis of heterotropic interactions in proteins: characterization of cooperative ligand binding by isothermal titration calorimetry. Biophys J. 2006;91:1887–904.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Du W, Liu W-S, Payne DJ, Doyle ML. Synergistic inhibitor binding to Streptococcus pneumoniae 5-enolpyruvylshikimate-3-phosphate synthase with both monovalent cations and substrate. Biochemistry. 2000;39:10140–6.PubMedGoogle Scholar
  42. 42.
    Jonckheere AI, Smeitink JAM, Rodenburg RJT. Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis. 2012;35:211–25.PubMedGoogle Scholar
  43. 43.
    Pulido NO, Salcedo G, Perez-Hernandez G, Jose-Nuñez C, Velazquez-Campoy A, Garcia-Hernandez E. Energetic effects of magnesium in the recognition of adenosine nucleotides by the F(1)-ATPase beta subunit. Biochemistry. 2010;49:5258–68.PubMedGoogle Scholar
  44. 44.
    Salcedo G, Cano-Sanchez P, Tuena de Gomez-Puyou M, Velazquez-Campoy A, Garcia-Hernandez E. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides. Biochim Biophys Acta—Bioenerg. 2014;1837:44–50.Google Scholar
  45. 45.
    Peselis A, Gao A, Serganov A. Cooperativity, allostery and synergism in ligand binding to riboswitches. Biochimie. 2015;117:100–9.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Seo M-H, Park J, Kim E, Hohng S, Kim H-S. Protein conformational dynamics dictate the binding affinity for a ligand. Nat Commun. 2014;5:3724.PubMedGoogle Scholar
  47. 47.
    Guo J, Zhou H-X. Protein Allostery and conformational dynamics. Chem Rev. 2016;116:6503–15.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Riera TV, Zheng L, Josephine HR, Min D, Yang W, Hedstrom L. Allosteric activation via kinetic control: potassium accelerates a conformational change in IMP dehydrogenase. Biochemistry. 2011;50:8508–18.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Stock G, Hamm P. A non equilibrium approach to allosteric communication. Philos Trans R Soc Lond B Biol Sci. 2018;373:20170187.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Nussinov R, Tsai C-J. Allostery in disease and drug discovery. Cell. 2013;153:293–305.PubMedGoogle Scholar
  51. 51.
    Abdel-Magid AF. Allosteric modulators: an emerging concept in drug discovery. ACS Med Chem Lett. 2015;6:104–7.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Lu S, Ji M, Ni D, Zhang J. Discovery of hidden allosteric sites as novel targets for allosteric drug design. Drug Discov Today. 2018;23:359–65.PubMedGoogle Scholar
  53. 53.
    Ni D, Lu S, Zhang J. Emerging roles of allosteric modulators in the regulation of protein-protein interactions (PPIs): a new paradigm for PPI drug discovery. Med Res Rev. 2019.  https://doi.org/10.1002/med.21585.PubMedGoogle Scholar
  54. 54.
    Hilser VJ, Wrabl JO, Motlagh HN. Structural and energetic basis of allostery. Annu Rev Biophys. 2012;41:585–609.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Li J, Hilser VJ. Assessing allostery in intrinsically disordered proteins with ensemble allosteric model. Methods Enzymol. 2018;611:531–57.PubMedGoogle Scholar
  56. 56.
    Zhang L, Li M, Liu Z. A comprehensive ensemble model for comparing the allosteric effect of ordered and disordered proteins. PLoS Comput Biol. 2018;14:e1006393.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Hilser VJ, Thompson EB. Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proc Natl Acad Sci USA. 2007;104:8311–5.PubMedGoogle Scholar
  58. 58.
    Berlow RB, Dyson HJ, Wright PE. Expanding the paradigm: intrinsically disordered proteins and allosteric regulation. J Mol Biol. 2018;430:2309–20.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Li J, White JT, Saavedra H, Wrabl JO, Motlagh HN, Liu K, Sowers J, Schroer TA, Thompson EB, Hilser VJ. Genetically tunable frustration controls allostery in an intrinsically disordered transcription factor. eLife. 2017;6:e30688.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Felix J, Weinhäupl K, Chipot C, Dehez F, Hessel A, Gauto DF, Morlot C, Abian O, Gutsche I, Velazquez-Campoy A, Schanda P, Fraga H. Mechanism of the allosteric activation of the ClpP protease machinery by substrates and active-site inhibitors. Sci Adv. 2019.  https://doi.org/10.1101/578260.
  61. 61.
    Taneva SG, Bañuelos S, Falces J, Arregi I, Muga A, Konarev PV, Svergun DI, Velazquez-Campoy A, Urbaneja MA. A mechanism for histone chaperoning activity of nucleoplasmin: thermodynamic and structural models. J Mol Biol. 2009;393:448–63.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFIUniversidad de ZaragozaZaragozaSpain
  2. 2.Departamento de Bioquímica y Biología Molecular y CelularUniversidad de ZaragozaZaragozaSpain
  3. 3.Aragon Institute for Health Research (IIS Aragon)ZaragozaSpain
  4. 4.Biomedical Research Networking Centre for Liver and Digestive Diseases (CIBERehd)MadridSpain
  5. 5.Aragon Health Sciences Institute (IACS)ZaragozaSpain
  6. 6.ARAID FoundationGovernment of AragonZaragozaSpain

Personalised recommendations