Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3249–3256 | Cite as

Encapsulating properties of sulfobutylether-β-cyclodextrin toward a thrombin-derived antimicrobial peptide

  • Rosario Oliva
  • Filomena Battista
  • Serena Cozzolino
  • Eugenio Notomista
  • Roland Winter
  • Pompea Del Vecchio
  • Luigi PetracconeEmail author


The pharmacological application of antimicrobial peptides (AMPs) is seriously limited as they are not chemically and physically stable. Their encapsulation could represent a way to protect AMPs improving their pharmacological properties. In this study, the complex between the sulfobutylether-β-cyclodextrin (SBE-β-CD) and the antimicrobial peptide (P)GKY20 and its effect on a lipid bilayer have been characterized by a combination of calorimetric (ITC, DSC) and spectroscopic (fluorescence, Circular Dichroism) techniques. The results obtained indicate that the (P)GKY20 form a 1:1 inclusion complex with the anionic SBE-β-CD. Our ITC experiments revealed that the interaction process is entropically driven and that the enthalpy change only slightly contributes to the free energy change. Finally, differential scanning calorimetry data revealed that the peptide, even in the presence of SBE-β-CD, is still able to perturb the bacterial model membrane composed of DPPC/DPPG (8/2 mol mol−1). This work demonstrated that, in principle, SBE-β-CD could be used as efficient encapsulating agent for the (P)GKY20 or other antimicrobial peptides, rendering possible their pharmacological applications.


Antimicrobial peptides Cyclodextrin Liposomes DSC Isothermal titration calorimetry 



We thank Dr. Marcella Niccoli for her technical support in the liposomes preparation procedure. We also thank the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC-2033 Projektnummer 390677874 for financial support.

Supplementary material

10973_2019_8609_MOESM1_ESM.pdf (216 kb)
Supplementary material 1 (PDF 215 kb)


  1. 1.
    Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–95.CrossRefGoogle Scholar
  2. 2.
    Lakshmaiah Narayana J, Chen J-Y. Antimicrobial peptides: possible anti-infective agents. Peptides. 2015;72:88–94.CrossRefGoogle Scholar
  3. 3.
    Ciumac D, Gong H, Hu X, Lu JR. Membrane targeting cationic antimicrobial peptides. J Colloid Interface Sci. 2019;537:163–85.CrossRefGoogle Scholar
  4. 4.
    Schweizer F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol. 2009;625:190–4.CrossRefGoogle Scholar
  5. 5.
    Nyström L, Malmsten M. Membrane interactions and cell selectivity of amphiphilic anticancer peptides. Curr Opin Colloid Interface Sci. 2018;38:1–17.CrossRefGoogle Scholar
  6. 6.
    Travkova OG, Moehwald H, Brezesinski G. The interaction of antimicrobial peptides with membranes. Adv Coll Interface Sci. 2017;247:521–32.CrossRefGoogle Scholar
  7. 7.
    Teixeira V, Feio MJ, Bastos M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res. 2012;51:149–77.CrossRefGoogle Scholar
  8. 8.
    Hamoen LW, Wenzel M. Editorial: antimicrobial peptides—interaction with membrane lipids and proteins. Front Cell Dev Biol. 2017;5. Available from: Accessed Aug 25 2018.
  9. 9.
    Starr CG, Wimley WC. Antimicrobial peptides are degraded by the cytosolic proteases of human erythrocytes. Biochim Biophys Acta Biomembr. 2017;1859:2319–26.CrossRefGoogle Scholar
  10. 10.
    Stella VJ, He Q. Cyclodextrins. Toxicol Pathol. 2008;36:30–42.CrossRefGoogle Scholar
  11. 11.
    Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J. A review on the use of cyclodextrins in foods. Food Hydrocolloid. 2009;23:1631–40.CrossRefGoogle Scholar
  12. 12.
    Jansook P, Ogawa N, Loftsson T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int J Pharm. 2018;535:272–84.CrossRefGoogle Scholar
  13. 13.
    Jambhekar SS, Breen P. Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov Today. 2016;21:356–62.CrossRefGoogle Scholar
  14. 14.
    Ikeda H, Ohata T, Yukawa M, Fujisawa M, Aki H. Difference in formation mechanism of inclusion complex between configuration isomers of gallate-type catechin and β-cyclodextrin. J Therm Anal Calorim. 2018;135(5):2789–95.CrossRefGoogle Scholar
  15. 15.
    Irie T. Cyclodextrins in peptide and protein delivery. Adv Drug Deliv Rev. 1999;36:101–23.CrossRefGoogle Scholar
  16. 16.
    Tötternam AM, Schipper NGM, Thompson DO, Mannermaa J-P. Intestinal safety of water-soluble β-cyclodextrins in paediatric oral solutions of spironolactone: effects on human intestinal epithelial caco-2 cells. J Pharm Pharmacol. 1997;49:43–8.CrossRefGoogle Scholar
  17. 17.
    Luke DR, Tomaszewski K, Damle B, Schlamm HT. Review of the basic and clinical pharmacology of sulfobutylether-β-cydodextrin (SBECD). J Pharm Sci. 2010;99:3291–301.CrossRefGoogle Scholar
  18. 18.
    Beig A, Agbaria R, Dahan A. The use of captisol (SBE7-β-CD) in oral solubility-enabling formulations: comparison to HPβCD and the solubility–permeability interplay. Eur J Pharm Sci. 2015;77:73–8.CrossRefGoogle Scholar
  19. 19.
    Kasetty G, Papareddy P, Kalle M, Rydengård V, Mörgelin M, Albiger B, et al. Structure-activity studies and therapeutic potential of host defense peptides of human thrombin. Antimicrob Agents Chemother. 2011;55:2880–90.CrossRefGoogle Scholar
  20. 20.
    Oliva R, Del Vecchio P, Grimaldi A, Notomista E, Cafaro V, Pane K, et al. Membrane disintegration by the antimicrobial peptide (P)GKY20: lipid segregation and domain formation. Phys Chem Chem Phys. 2019;21:3989–98.CrossRefGoogle Scholar
  21. 21.
    Ribeiro MMB, Franquelim HG, Castanho MARB, Veiga AS. Molecular interaction studies of peptides using steady-state fluorescence intensity. Static (de)quenching revisited. J Pept Sci. 2008;14(4):401–6.CrossRefGoogle Scholar
  22. 22.
    Connors KA. Binding constants: the measurement of molecular complex stability. New York: Wiley; 1987.Google Scholar
  23. 23.
    Biltonen RL, Lichtenberg D. The use of differential scanning calorimetry as a tool to characterize liposome preparations. Chem Phys Lipid. 1993;64:129–42.CrossRefGoogle Scholar
  24. 24.
    Oliva R, Chino M, Pane K, Pistorio V, De Santis A, Pizzo E, et al. Exploring the role of unnatural amino acids in antimicrobial peptides. Sci Rep. 2018;8:8888.CrossRefGoogle Scholar
  25. 25.
    Hansen LD, Fellingham GW, Russell DJ. Simultaneous determination of equilibrium constants and enthalpy changes by titration calorimetry: methods, instruments, and uncertainties. Anal Biochem. 2011;409:220–9.CrossRefGoogle Scholar
  26. 26.
    Falconer RJ. Applications of isothermal titration calorimetry—the research and technical developments from 2011 to 2015: review of isothermal titration calorimetry from 2011 to 2015. J Mol Recognit. 2016;29:504–15.CrossRefGoogle Scholar
  27. 27.
    Niccoli M, Oliva R, Castronuovo G. Cyclodextrin–protein interaction as inhibiting factor against aggregation: a calorimetric study at 298 K. J Therm Anal Calorim. 2017;127:1491–9.CrossRefGoogle Scholar
  28. 28.
    Sbârcea L, Ledeţi A, Udrescu L, Văruţ R-M, Barvinschi P, Vlase G, et al. Betulonic acid—cyclodextrins inclusion complexes. J Therm Anal Calorim. 2019;53(3):843–54.Google Scholar
  29. 29.
    Lakowicz JR, editor. Principles of fluorescence spectroscopy. Boston: Springer; 2006.Google Scholar
  30. 30.
    Valeur B. Molecular fluorescence: principles and applications. Weinheim: Wiley; 2002.Google Scholar
  31. 31.
    Oliva R, Del Vecchio P, Stellato MI, D’Ursi AM, D’Errico G, Paduano L, et al. A thermodynamic signature of lipid segregation in biomembranes induced by a short peptide derived from glycoprotein GP36 of feline immunodeficiency virus. Biochim Biophys Acta Biomembr. 2015;1848:510–7.CrossRefGoogle Scholar
  32. 32.
    Prenner EJ, Lewis RNAH, Kondejewski LH, Hodges RS, McElhaney RN. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes. Biochim Biophys Acta Biomembr. 1999;1417:211–23.CrossRefGoogle Scholar
  33. 33.
    Joanne P, Galanth C, Goasdoué N, Nicolas P, Sagan S, Lavielle S, et al. Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry. Biochim Biophys Acta Biomembr. 2009;1788:1772–81.CrossRefGoogle Scholar
  34. 34.
    Pizzo E, Oliva R, Morra R, Bosso A, Ragucci S, Petraccone L, et al. Binding of a type 1 RIP and of its chimeric variant to phospholipid bilayers: evidence for a link between cytotoxicity and protein/membrane interactions. Biochim Biophys Acta Biomembr. 2017;1859:2106–12.CrossRefGoogle Scholar
  35. 35.
    Lewis RNAH, Zhang Y-P, McElhaney RN. Calorimetric and spectroscopic studies of the phase behavior and organization of lipid bilayer model membranes composed of binary mixtures of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol. Biochim Biophys Acta Biomembr. 2005;1668:203–14.CrossRefGoogle Scholar
  36. 36.
    Cañadas O, Casals C. Differential scanning calorimetry of protein–lipid interactions. In: Kleinschmidt JH, editor. Lipid-protein interactions, vol. 974., Methods in molecular biologyTotowa: Humana Press; 2013. p. 55–71.CrossRefGoogle Scholar
  37. 37.
    Rekharsky MV, Inoue Y. Complexation thermodynamics of cyclodextrins. Chem Rev. 1998;98:1875–918.CrossRefGoogle Scholar
  38. 38.
    Matsuyama K, El-Gizawy S, Perrin JH. Thermodynamics of binding of aromatic amino acids to α-, β- and γ-cyclodextrins. Drug Dev Ind Pharm. 1987;13:2687–91.CrossRefGoogle Scholar
  39. 39.
    Miyajima M, Ozeki T, Stella VJ. Binding constants for aromatic amino acids and their derivatives with sulfobutyl ether β-cyclodextrin determined using capillary electrophoresis. J Drug Deliv Sci Technol. 2004;14:383–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Chemical SciencesUniversity of Naples Federico II, Complesso Universitario di Monte Sant’AngeloNaplesItaly
  2. 2.Department of BiologyUniversity of Naples Federico IINaplesItaly
  3. 3.Physical Chemistry ITU Dortmund UniversityDortmundGermany

Personalised recommendations