Advertisement

Enthalpies of acid dissociation of l-carnosine in aqueous solution

  • A. I. Lytkin
  • V. P. BarannikovEmail author
  • V. G. Badelin
  • O. N. Krutova
Article
  • 22 Downloads

Abstract

The enthalpies of l-carnosine interaction with solutions of hydrochloric acid have been measured by calorimetric method in the presence of NaCl at 298.15 K and ionic strength as high as 0.25, 0.50 and 0.75 mol dm−3. The enthalpies of acid dissociation have been determined from the obtained data. The effect of a background electrolyte concentration on the dissociation enthalpy of peptide has been considered. Standard thermodynamic quantities (ΔdisH°, ΔdisG°, ΔdisS°) of the acid dissociation of the dipeptide in aqueous solutions have been determined on the basis of the obtained thermochemical results and available data on the acid dissociation constants corrected for the zero-order ionic strength. Ability to acid dissociation of amino acids in a free state is compared with those for amino acid residues involved in the dipeptide linkage. The alteration of acidity has been connected with variation in hydration of reactivity centers.

Keywords

3-Alanyl-l-histidine l-carnosine Acid dissociation Dissociation enthalpy Dissociation entropy Solutions Calorimetry 

Notes

Acknowledgements

The work was financially supported by the Russian Foundation for Basic Research (Project No: 18-43-370018_r_a).

References

  1. 1.
    Usacheva T, Kabirov D, Beregova D, Gamov G, Sharnin V, Biondi M, Mayol L, D’Aria F, Giancola C. Thermodynamics of complex formation between hydroxypropyl-β-cyclodextrin and quercetin in water–ethanol solvents at T = 298.15 K. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08136-5.Google Scholar
  2. 2.
    Makowska J, Wyrzykowski D, Kamysz E, Tesmar A, Kamysz W, Chmurzyński L. Probing the binding selected metal ions and biologically active substances to the antimicrobial peptide LL-37 using DSC, ITC measurements and calculations. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08310-9.Google Scholar
  3. 3.
    Bonomo RP, Bruno V, Conte E, De Guidi G, La Mendola D, Maccarrone G, Nicoletti F, Rizzarelli E. Salvatore Sortino and Graziella Vecchio, Potentiometric, spectroscopic and antioxidant activity studies of SOD mimics containing carnosine. Dalton Trans. 2003.  https://doi.org/10.1039/b308168k.Google Scholar
  4. 4.
    Daniele PG, Prenesti E, Ostacoli G. Ultraviolet–circular dichroism spectra for structural analysis of copper(II) complexes with aliphatic and aromatic ligands in aqueous solution. J Chem Soc Dalton Trans. 1996.  https://doi.org/10.1039/DT9960003269.Google Scholar
  5. 5.
    Gajda T, Henry B, Delpuech J-J. Multinuclear NM R and potentiometric study on tautomerism during protonation and zinc(II) complex formation of some imidazole-containing peptide derivatives. J Chem Soc Perkin Trans. 1994;2:157–64.  https://doi.org/10.1039/P29940000157.CrossRefGoogle Scholar
  6. 6.
    Gaggelli E, Valensin G. 1H and 13C NMR relaxation investigation of the calcium complex of β-alanyl-l-histidine (carnosine) in aqueous solution. J Chem Soc Perkin Trans 2. 1990.  https://doi.org/10.1039/P29900000401.Google Scholar
  7. 7.
    Farkas E, Sovago I, Gergely A. Studies on transition-metal–peptide complexes. Part 8. Parent and mixed-ligand complexes of histidine-containing dipeptides. J Chem Soc Dalton Trans. 1993.  https://doi.org/10.1039/DT9830001545.Google Scholar
  8. 8.
    Daniele PG, Amico P, Ostacoli G. Heterobinuclear Cu(II) L-carnosine complexes with Cd(II) or Zn(II) in aqueous solution. Inorg Chem Acta. 1982;66:65–70.  https://doi.org/10.1016/S0020-1693(00)85791-6.CrossRefGoogle Scholar
  9. 9.
    Daniele P, Prenesti E, Zelano V, Ostacoli G. Chemical relevance of the copper(II)–L-carnosine system in aqueous solution: a thermodynamic and spectrophotometric study. Spectrochim Acta A. 1993;49:1299–303.  https://doi.org/10.1016/0584-8539(93)80037-B.CrossRefGoogle Scholar
  10. 10.
    Meshkov AN, Gamov GA. KEV: a free software for calculating the equilibrium composition and determining the equilibrium constants using UV–Vis and potentiometric data. Talanta. 2019;198:200–5.  https://doi.org/10.1016/j.talanta.2019.01.107.CrossRefGoogle Scholar
  11. 11.
    Lytkin AI, Chernikov VV, Krutova ON, Skvortsov IA. Standard enthalpies of formation of l-lysine and the products of its dissociation in aqueous solutions. J Therm Anal Calorim. 2017;130:457–60.  https://doi.org/10.1007/s10973-017-6134-6.CrossRefGoogle Scholar
  12. 12.
    Archer DG. Thermodynamic properties of the KCl + H2O system. J Phys Chem Ref Data. 1999;28:1–16.  https://doi.org/10.1063/1.556034.CrossRefGoogle Scholar
  13. 13.
    Vasil Open image in new window ev VP. Termodinamicheskie svoystva elektrolitnykh rastvorov, Moskva, Vysshaya shkola, 1982, s.200.Google Scholar
  14. 14.
    Piekarski H, Nowicka B. Calorimetrical studies of interactions of some peptides with electrolytes, urea and ethanol in water at 298.15 K. J Therm Anal Calorim. 2010;102:31–6.  https://doi.org/10.1007/s10973-009-0547-9.CrossRefGoogle Scholar
  15. 15.
    Vasil Open image in new window ev VP, Kochergina LA, Garavin VYu. Termodinamicheskie kharakteristiki dissotsiatsii l-hitidina v vodnykh rastvorakh. Zhurnal Obshei Khimii. 1985;55:2780–7.Google Scholar
  16. 16.
    Farkas E, Megyeri K, Somsak L, Kovacs L. Interaction between Mo(VI) and siderophore models in aqueous solution. J Inorg Biochem. 1998;70:41–5.  https://doi.org/10.1016/S0162-0134(98)00011-7.CrossRefGoogle Scholar
  17. 17.
    Ide M, Maeda Y, Kitano H. Effect of hydrophobicity of amino acids on the structure of water. J Phys Chem B. 1997;101:7022–6.  https://doi.org/10.1021/jp971334m.CrossRefGoogle Scholar
  18. 18.
    Lim VI, Curran JF, Garber MB. Hydration shells of molecules in molecular association: a mechanism for biomolecular recognition. J Theor Biol. 2012;301:42–8.  https://doi.org/10.1016/j.jtbi.2012.02.008.CrossRefGoogle Scholar
  19. 19.
    Badelin VG, Barannikov VP, Tarasova GN, Chernyavskaya NV, Katrovtseva AV, Lan FT. Thermodynamical characteristics of Acid_Base equilibria in Glycyl_Glycyl_Glycine aqueous solutions at 298 K. Rus J Phys Chem A. 2012;86:40–4.  https://doi.org/10.1134/S003602441112003X.CrossRefGoogle Scholar
  20. 20.
    Badelin VG, Barannikov VP, Katrovtseva AV, Tarasova GN. Dissociation constants of protolytic dissociation of glutamyl-glutamic and glycyl-glutamic acids in aqueous solution at 298 K. Rus J Gen Chem. 2013;83:945–8.  https://doi.org/10.1134/S1070363213050113.CrossRefGoogle Scholar
  21. 21.
    Dandurand J, Samouillan V, Pepe A, Bochicchio B. Phase behavior and chain dynamics of elastin-like peptides versus amino acid sequences. J Therm Anal Calorim. 2018;131:1323–32.  https://doi.org/10.1007/s10973-017-6633-5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Ivanovo State University of Chemistry and TechnologyIvanovoRussia
  2. 2.G.A. Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia

Personalised recommendations