Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 4, pp 2923–2936 | Cite as

Nanostructured AgCu system at repeated melting

Structure and thermal behavior
  • Oana Gingu
  • Speranta Tanasescu
  • George Stoian
  • Nicoleta Lupu
  • Petre RotaruEmail author


The thermal behavior of the eutectic powder particles mixture Ag-28% Cu (mass) represents the aim of this research. This comportment is studied from the point of view of the structural changes induced to the powder mixture processing by the wet mechanical alloying (WMA) technique. After 80 h of WMA in ethylene glycol aqueous solution and argon atmosphere, the initial powder mixture becomes nanostructured composite particles with bimetallic AgCu matrix reinforced by in situ processed Cu2O. The particle size distribution, depicted by laser diffraction technique, reveals the nanometric range of the composite particles between 60 and 80 nm. The phase identification, quantitative analysis as well as crystallite size measurements by XRD confirm the nanostructured feature of the bimetallic matrix, acknowledged by SEM with EDX and FIB, as well as the reinforcing components synthesis during the WMA process. Two successive melting processes have been developed to point out the increased melting point in the range of 928.00–946.10 °C. The thermal analysis, developed in argon atmosphere, highlights the thermal effects of AgCu/Cu2O nanoparticles generated by argon adsorption/desorption from the powders surface.


AgCu system Mechanical alloying Thermal analysis XRD SEM 



The authors would like to thank for the support by the joint actions in the frame of the COST Action MP0903 “NANOALLOY – Nanoalloys as Advanced Materials: From Structure to Properties and Applications”/2010–2014 funded by the European Commission.


  1. 1.
    Valodkar M, Modi S, Pal A, Thakore S. Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater Res Bull. 2011;46:384–9.CrossRefGoogle Scholar
  2. 2.
    Koch CC. Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostruct Mater. 1997;9:13–22.CrossRefGoogle Scholar
  3. 3.
    Ehrenreich H, Philipp HR. Optical properties of Ag and Cu. Phys Rev. 1962;128:1622–9.CrossRefGoogle Scholar
  4. 4.
    Shin K, Kim DH, Yeo SC, Lee HM. Structural stability of AgCu bimetallic nanoparticles and their application as a catalyst: a DFT study. Catal Today. 2012;185:94–8.CrossRefGoogle Scholar
  5. 5.
    Huang CH, Wang HP, Changa JE, Eyring EM. Synthesis of nanosize-controllable copper and its alloys in carbon shells. Chem Commun. 2009;4663–5.Google Scholar
  6. 6.
    Dash PK, Balto Y. Generation of nano-copper particles through wire explosion method and its characterization. Res J Nanosci Nanotechnol. 2011;1:25–33.CrossRefGoogle Scholar
  7. 7.
    Ferrando R, Jellinek J, Johnston RL. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev. 2008;108:845–51.CrossRefGoogle Scholar
  8. 8.
    Calvo F. Nanoalloys: from fundamentals to emergent applications. Amsterdam: Elsevier; 2013.Google Scholar
  9. 9.
    Hu W, Xiao S, Deng H, Luo W, Deng L. Thermodynamic properties of nano-silver and alloy particles, silver nanoparticles. InTech Edition; 2010.Google Scholar
  10. 10.
    Shen TD, Zhang X, Han K, Davy CA, Aujla D, Kalu PN, Schwarz RB. Structure and properties of bulk nanostructured alloys synthesized by flux-melting. J Mater Sci. 2007;42:1638–48.CrossRefGoogle Scholar
  11. 11.
    Akada Y, Tatsumi H, Yamaguchi T, Hirose A, Morita T, Ide E. Interfacial bonding mechanism using silver metallo-organic nanoparticles to bulk metals and observation of sintering behavior. Mater Trans. 2008;49:1537–45.CrossRefGoogle Scholar
  12. 12.
    Sopoušek J, Pinkas J, Broz P, Buršík J, Vykoukal V, Škoda D, Stýskalík A, ZobaI O, Vlešál J, HrdliIka A, Šimbera J. Ag-Cu colloid synthesis: bimetallic nanoparticle characterisation and thermal treatment. J Nanomater. 2014;638964:1–13.CrossRefGoogle Scholar
  13. 13.
    Beyerlein IJ, Tóth LS. Texture evolution in equal-channel angular extrusion. Prog Mater Sci. 2009;54:427–510.CrossRefGoogle Scholar
  14. 14.
    Beyerlein IJ, Mara NA, Bhattacharyya D, Alexander DJ, Necker CT. Texture evolution via combined slip and deformation twinning in rolled silver–copper cast eutectic nanocomposite. Int J Plast. 2011;27:121–46.CrossRefGoogle Scholar
  15. 15.
    Uenishi K. Formation of non-equilibrium phases in the alloy systems with positive heat of mixing by mechanical alloying. Master thesis, Kyoto University; 1992.Google Scholar
  16. 16.
    Ma E, Sheng HW, He JH, Schilling PJ. Solid-state alloying in nanostructured binary systems with positive heat of mixing. Mater Sci Eng A. 2000;286:48–57.CrossRefGoogle Scholar
  17. 17.
    Greer JR. Nanotwinned metals: It’s all about imperfections. Nat Mater. 2013;12:689–90.CrossRefGoogle Scholar
  18. 18.
    Wang J, Beyerlein IJ, Marac NA, Bhattacharyya D. Interface-facilitated deformation twinning in copper within submicron Ag–Cu multilayered composites. Scr Mater. 2011;64:1083–6.CrossRefGoogle Scholar
  19. 19.
    Gingu O, Nicolicescu C, Sima G. Research of the milling time influence on Ag-Cu powder particles size processed by mechanical alloying route. Solid State Phenom. 2012;188:382–7.CrossRefGoogle Scholar
  20. 20.
    Wu XL, Liao XZ, Srinivasan SG, Zhou F, Lavernia EJ, Valiev RZ, Zhu YT. New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. Phys Rev Lett. 2008;100:095701–4.CrossRefGoogle Scholar
  21. 21.
    Badea M, Olar R, Marinescu D, Segal E, Rotaru A. Thermal stability of some new complexes bearing ligands with polymerizable groups. J Therm Anal Calorim. 2007;88:317–21.CrossRefGoogle Scholar
  22. 22.
    Cavallaro G, Lazzara G, Milioto S, Parisi F. Halloysite nanotubes as sustainable nanofiller for paper consolidation and protection. J Therm Anal Calorim. 2014;117:1293–8.CrossRefGoogle Scholar
  23. 23.
    Arcudi F, Cavallaro G, Lazzara G, Massaro M, Milioto S, Noto R, Riela S. Selective functionalization of halloysite cavity by click reaction: structured filler for enhancing mechanical properties of bionanocomposite films. J Phys Chem C. 2014;118:15095–101.CrossRefGoogle Scholar
  24. 24.
    Rotaru A, Gosa M, Rotaru P. Computational thermal and kinetic analysis. Software for non-isothermal kinetics by standard procedure. J Therm Anal Calorim. 2008;94:364–71.CrossRefGoogle Scholar
  25. 25.
    Rotaru A, Gosa M. Computational thermal and kinetic analysis. Complete standard procedure to evaluate the kinetic triplet form non-isothermal data. J Them Anal Calorim. 2009;97:421–6.CrossRefGoogle Scholar
  26. 26.
    Kropidlowska A, Rotaru A, Strankowski M, Becker B, Segal E. Heteroleptic cadmium(II) complex, potential precursor for semiconducting CdS laters. Thermal stability and non-isothermal decomposition kinetics. J Therm Anal Calorim. 2008;91:903–9.CrossRefGoogle Scholar
  27. 27.
    Kucerik J, Prusova A, Rotaru A, Flimel K, Janacek J, Conte P. DSC study on hyaluronan drying and hydration. Thermochim Acta. 2011;523:245–9.CrossRefGoogle Scholar
  28. 28.
    Rotaru A, Bratulescu G, Rotaru P. Thermal analysis of azoic dyes: Part I, Non-isothermal decomposition kinetics of [4-(4-chlorobenzyloxy)-3-methylphenyl](p-tolyl)diazene in dynamic air atmosphere. Thermochim Acta. 2009;489:63–9.CrossRefGoogle Scholar
  29. 29.
    Rotaru A, Miller AJ, Arnold DC, Morrison FD. Towards novel multiferroic and magnetoelectric materials: dipole stability in tetragonal tungsten bronzes. Philos Trans R Soc A. 2014;372:20120451.CrossRefGoogle Scholar
  30. 30.
    Moneghini M, De Zordi N, Solinas D, Macchiavelli S, Princivalle F. Characterization of solid dispersions of itraconazole and vitamin E TPGS prepared by microwave technology. Future Med Chem. 2010;2(2):237–46.CrossRefGoogle Scholar
  31. 31.
    Constantinescu C, Rotaru A, Nedelcea A, Dinescu M. Thermal behavior and matrix-assisted pulsed laser evaporation deposition of functional polymeric materials thin films with potential use in optoelectronics. Mater Sci Semicond Process. 2015;30:242–9.CrossRefGoogle Scholar
  32. 32.
    Wolkenstein T. Physico-chimie de la surface des semi-conducteurs, Edition Mir., Moscou; 1977.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of IMST, Faculty of MechanicsUniversity of CraiovaCraiovaRomania
  2. 2.Ilie Murgulescu Institute of Physical ChemistryBucharestRomania
  3. 3.National Institute of Research and Development for Technical PhysicsIasiRomania
  4. 4.Department of Physics, Faculty of SciencesUniversity of CraiovaCraiovaRomania

Personalised recommendations