DSC characterization of enzymatic digestion of corneas treated with plant extracts rich in polyphenols

  • Patrícia Alessandra BersanettiEmail author
  • Luiz Guilherme Ito da Cruz
  • Regina Carlstron
  • Paulo Schor
  • Andreia de Araújo Morandim-Giannetti


Keratoconus is a progressive disease that affects patients’ quality of life by producing corneal irregular astigmatism and low vision as the cornea becomes thinner and presents a conical protrusion. Inducing cross-linking in keratoconic corneal stroma is the current preventive intervention that effectively blocks the progression of this ectasia. As a result of this process, there is an increase in biomechanical strength and resistance of the cornea. In this context, two plant extracts rich in polyphenols (Euterpe oleracea and Stryphnodendron adstringens) have been tested in this study to compact and stiffen the tissue, and its effect was evaluated by enzymatic digestion of porcine corneas. Thermal analysis by DSC was employed to verify the corneal resistance to degradation induced by the plant extracts. The values of temperature and enthalpy of denaturation at the initial time were: 65.6 ± 0.3 °C/3.8 ± 0.3 J g−1; 79.4 ± 0.5 °C/5.5 ± 0.4 J g−1; and 93.1 ± 1.2 °C/8.0 ± 0.6 J g−1, respectively, for the control, E. oleracea, and S. adstringens groups. After 24 h of collagenase digestion, these values were: 60.1 ± 0.8 °C/1.3 ± 0.1 J g−1; 78.1 ± 1.0 °C/5.6 ± 0.6 J g−1; and 93.2 ± 0.6 °C/8.1 ± 0.06 J g−1, respectively. These results show that there was no decrease in temperature and enthalpy of denaturation (p < 0.01) in corneas of the groups treated with the E. oleracea or S. adstringens extracts. However, in the control group, the temperature and the enthalpy decreased by approximately 8% and 65%, respectively. Therefore, this work demonstrated for the first time that plant extracts rich in polyphenols were efficient in decreasing the digestion and increasing the denaturation temperature of corneas.


Cornea DSC Enzymatic digestion Polyphenols Euterpe oleracea Stryphnodendron adstringens 



This work was supported by the Grant #2016/19933-5 from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).


  1. 1.
    Delmonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011;37(3):588–98.CrossRefGoogle Scholar
  2. 2.
    Michelacci YM. Collagens and proteoglycans of the corneal extracellular matrix. Braz J Med Biol Res. 2003;36(8):1037–46.CrossRefGoogle Scholar
  3. 3.
    Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42(4):297–319.CrossRefGoogle Scholar
  4. 4.
    Colin J, Cochener B, Savary G, Malet F. Correcting keratoconus with intracorneal rings. J Cataract Refract Surg. 2000;26(8):1117–22.CrossRefGoogle Scholar
  5. 5.
    Han DCY, Mehta JS, Por YM, Htoon HM, Tan DTH. Comparison of outcomes of lamellar keratoplasty and penetrating keratoplasty in keratoconus. Am J Ophthalmol. 2009;148(5):744–51.CrossRefGoogle Scholar
  6. 6.
    Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–7.CrossRefGoogle Scholar
  7. 7.
    Sel S, Nass N, Pötzsch S, Trau S, Simm A, Kalinski T, Duncker GI, Kruse FE, Auffarth GU, Brömme H. UVA irradiation of riboflavin generates oxygen-dependent hydroxyl radicals. Redox Rep. 2014;19(2):72–9.CrossRefGoogle Scholar
  8. 8.
    Wollensak G, Spoerl E, Seiler T. Stress–strain measurements of human and porcine corneas after riboflavin–ultraviolet-a-induced cross-linking. J Cataract Refract Surg. 2003;29(9):1780–5.CrossRefGoogle Scholar
  9. 9.
    Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66(1):97–103.CrossRefGoogle Scholar
  10. 10.
    Wollensak G, Iomdina E. Long-term biomechanical properties after collagen crosslinking of sclera using glyceraldehyde. Acta Ophthalmol. 2008;86(8):887–93.CrossRefGoogle Scholar
  11. 11.
    Paik DC, Wen Q, Braunstein RE, Airiani S, Trokel SL. Initial studies using aliphatic β-nitro alcohols for therapeutic corneal cross-linking. Invest Ophthalmol Vis Sci. 2009;50(3):1098–105.CrossRefGoogle Scholar
  12. 12.
    Avila MY, Navia JL. Effect of genipin collagen crosslinking on porcine corneas. J Cataract Refract Surg. 2010;36(4):659–64.CrossRefGoogle Scholar
  13. 13.
    Bedran-Russo AK, Pashley DH, Agee K, Drummond JL, Miescke KJ. Changes in stiffness of demineralized dentin following application of collagen crosslinkers. J Biomed Mater Res B. 2008;86(2):330–4.CrossRefGoogle Scholar
  14. 14.
    Bersanetti PA, Bueno TL, Morandim-Giannetti AA, Nogueira RF, Matos JR, Schor P. Characterization of rabbit corneas subjected to stromal stiffening by the açaí extract (Euterpe oleracea). Curr Eye Res. 2017;42(4):528–33.CrossRefGoogle Scholar
  15. 15.
    da Cruz LGI, Moraes GA, Nogueira RF, de Morandim-Giannetti AA, Bersanetti PA. DSC characterization of rabbit corneas treated with Stryphnodendron adstringens (Mart.) Coville extracts. J Therm Anal Calorim. 2018;131(1):621–5.CrossRefGoogle Scholar
  16. 16.
    Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res. 2004;29(1):35–40.CrossRefGoogle Scholar
  17. 17.
    Kimura H, Ogawa S, Akihiro T, Yokota K. Structural analysis of A-type or B-type highly polymeric proanthocyanidins by thiolytic degradation and the implication in their inhibitory effects on pancreatic lipase. J Chromatogr A. 2011;1218(42):7704–12.CrossRefGoogle Scholar
  18. 18.
    Luximon-Ramma A, Bahorun T, Crozier A, Zbarsky V, Datla KP, Dexter DT, Aruoma OI. Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Res Int. 2005;38(4):357–67.CrossRefGoogle Scholar
  19. 19.
    Miles CA, Avery NC, Rodin VV, Bailey AJ. The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres. J Mol Biol. 2005;346(2):551–6.CrossRefGoogle Scholar
  20. 20.
    Kopp J, Bonneta M, Renou JP. Effect of collagen crosslinking on collagen-water interactions (a DSC investigation). Matrix. 1989;9(6):443–50.CrossRefGoogle Scholar
  21. 21.
    Liu T, Shi L, Gu Z, Dan W, Dan N. A novel combined polyphenol-aldehyde crosslinking of collagen film-applications in biomedical materials. Int J Biol Macromol. 2017;101:889–95.CrossRefGoogle Scholar
  22. 22.
    Slusarewicz P, Zhu K, Hedman T. Kinetic characterization and comparison of various protein crosslinking reagents for matrix modification. J Mater Sci Mater Med. 2010;21(4):1175–81.CrossRefGoogle Scholar
  23. 23.
    Zhai W, Chang J, Lin K, Wang J, Zhao Q, Sun X. Crosslinking of decellularized porcine heart valve matrix by procyanidins. Biomaterials. 2006;27(19):3684–90.Google Scholar
  24. 24.
    Bernal VM, Stanley DW. Changes in the melting characteristics of bovine tendon collagen induced by a bacterial collagenase. J Food Sci. 1986;51(3):834–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Departamento de Bioquímica, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloBrazil
  2. 2.Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloBrazil
  3. 3.Departamento de Engenharia QuímicaCentro Universitário FEISão Bernardo do CampoBrazil

Personalised recommendations