Advertisement

Thermodynamic stability of RECl3·xH2O (RE = Ce, Pr) determined by dynamic transpiration technique

  • D. K. SahooEmail author
  • R. Mishra
  • Raj Kumar
  • Vivekanand Kain
Article
  • 14 Downloads

Abstract

In the present study, decomposition mechanism of CeCl3·xH2O(s) and PrCl3·xH2O(s) was investigated using thermogravimetry, differential thermal analysis and evolved gas analysis techniques. Intermediate products formed in the dehydration of RE (Ce, Pr) Cl3·xH2O(s) were characterized by X-ray diffraction analyses. Thermodynamic stability of the RECl3·xH2O(s) and their intermediate products has been determined from the vapor pressure of water measured over the compounds employing dynamic transpiration technique.

Keywords

Vapor pressure Transpiration technique Free energy RECl3·xH2

Notes

References

  1. 1.
    Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M. Recycling of rare earths: a critical review. J Clean Prod. 2013;51:1–22.CrossRefGoogle Scholar
  2. 2.
    Xie F, Zhang T, Dreisinger D, Doyle F. A critical review on solvent extraction of rare earths in aqueous solutions. Miner Eng. 2014;56:10–28.CrossRefGoogle Scholar
  3. 3.
    Crow JM. 13 Exotic elements we cannot live without. In: The new scientists, vol. 1 (2897). London: UK; 2011. p. 36.Google Scholar
  4. 4.
    Murthy TKS, Gupta CK. Rare earth resources, their extraction and application. In: Subbarao EC, Wallace WE, editors. The science and technology of rare earth materials. Cambridge: Academic Press; 1980. p. 3.CrossRefGoogle Scholar
  5. 5.
    Mohan Das PN, Damodaran AD, Subhash M. Electro-winning of high purity individual rare earth metal—a review. Mater Sci Forum. 1988;30:61–72.CrossRefGoogle Scholar
  6. 6.
    Gupta CK, Krishnamurthy N. Extractive metallurgy of rare earths. Int Mater Rev. 1992;37:197–248.CrossRefGoogle Scholar
  7. 7.
    Sharma RA. Neodymium production process. J Met. 1987;39(2):33–7.Google Scholar
  8. 8.
    Yamamura T, Mehmood M, Maekawa H, Sato Y. Electrochemical processing of rare earths and rare metals by using molten salts. Chem. Sustain Dev. 2004;12:105–11.Google Scholar
  9. 9.
    Feng L, Guo C, Tang D. Relation between dissolution behavior and current efficiencies of La, Ce, Pr and Nd in their chloride molten salts. J Alloy Compd. 1996;234:183–6.CrossRefGoogle Scholar
  10. 10.
    Bosco MV, Fouga GG, Bohe AE. Kinetic study of neodymium oxide chlorination with gaseous chlorine. Thermochim Acta. 2012;540:98–106.CrossRefGoogle Scholar
  11. 11.
    Hopkins BS, West DH. Preparation of anhydrous rare earth compounds by the action of fused and solid “onium” salts on the oxides. J Am Chem Soc. 1935;57:1159–60.CrossRefGoogle Scholar
  12. 12.
    Nolting HJ, Simmons CR, Klingenberg JJ. Preparation and properties of high purity yttrium metal. J Inorg Nucl Chem. 1960;14(3–4):208–16.CrossRefGoogle Scholar
  13. 13.
    Singh S, Juneja JM, Bose DK. Preparation of neodymium-iron alloys by electrolysis in a fused chloride bath. J Appl Electrochem. 1995;25(1–2):1139–42.Google Scholar
  14. 14.
    Sundstrom J, Wijk O. Investigation of the dehydration schemes of NdCl3-6H2O, TbQ3·6H2O and DyCl3·6H2O using a fluidized bed. J Alloy Compd. 1997;249(1–2):224–8.CrossRefGoogle Scholar
  15. 15.
    Miller JF, Miller SE, Hines RC. Preparation of Anhydrous rare earth chloride for physiochemical studies. J Am Chem Soc. 1959;81(17):4449–51.CrossRefGoogle Scholar
  16. 16.
    Hong VV, Sundstrom J. The dehydration schemes of rare earth chlorides. Thermochim Acta. 1997;307:37–43.CrossRefGoogle Scholar
  17. 17.
    Ashcroft SJ, Mortimer CT. The thermal decomposition of lanthanide (III) chloride hydrates. J Less Common Met. 1968;14:403–6.CrossRefGoogle Scholar
  18. 18.
    Wendlandt WW. The thermal decomposition of Yttrium, scandium and some rare earth chloride hydrates. J Inorg Nucl Chem. 1957;5(2):118–22.CrossRefGoogle Scholar
  19. 19.
    Dharwadkar SR, Kerkar AS, Samant MS. A micrthermogravimetric system for the measurement of vapor pressure by transpiration method. Thermochim Acta. 1993;217:175–86.CrossRefGoogle Scholar
  20. 20.
    Spedding FH, Rard JA, Habenschuss A. Standard state entropies of aqueous rare earth ions. J Phys Chem. 1977;81(11):1069–74.CrossRefGoogle Scholar
  21. 21.
    Kubaschewski O, Alcock CB, Spencer PJ. Metallurgical thermochemistry. 6th ed. Oxford: Pergamon Press; 1993.Google Scholar
  22. 22.
    Roy RJ, Kipouros GJ. Estimation of vapor pressure of neodymium chloride hydrate. Thermochim Acta. 1991;178:169–83.CrossRefGoogle Scholar
  23. 23.
    Barin I. Thermochemical data of pure substances. New York: VCH; 1993.Google Scholar
  24. 24.
    Sahoo DK, Mishra R, Singh H, Krishnamurthy N. Determination of thermodynamic stability of lanthanum chloride hydrates (LaCl3·xH2O) by dynamic transpiration method. J Alloy Compd. 2014;588:578–84.CrossRefGoogle Scholar
  25. 25.
    Sahoo DK, Thakur S, Mishra R. Determination of thermodynamic stability of neodymium chloride hydrates (NdCl3xH2O) by dynamic transpiration method. J Therm Anal Calorim. 2016;126:1407–15.CrossRefGoogle Scholar
  26. 26.
    Weast RC. CRC hand book of chemistry and physics. 69th ed. Boca Raton: CRC Press; 1988.Google Scholar
  27. 27.
    Maier AI, Suponitskii YL, Karapet’yants MK. Enthalpies of formation of crystalline lanthanum, praseodymium, and neodymium selenites. Russ J Phys Chem. 1971;45:1349.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • D. K. Sahoo
    • 1
    Email author
  • R. Mishra
    • 2
  • Raj Kumar
    • 3
  • Vivekanand Kain
    • 1
  1. 1.SO/F, Material Processing and Corrosion Engineering Division (MP&CED)Bhabha Atomic Research CentreTrombay, MumbaiIndia
  2. 2.Chemistry DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia
  3. 3.Uranium Extraction DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia

Personalised recommendations