Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 3, pp 2159–2166 | Cite as

TG-DTA and FTIR analyses of roman and later historic mortars from Drobeta-Turnu Severin region

  • Codruţa Moşoiu
  • Dan Vlase
  • Gabriela VlaseEmail author
  • Radu Lazău
  • Titus Vlase


The study shows the analysis of the various Roman mortars in the survival structure of the Danube Bridge in Drobeta-Turnu Severin, Romania, which is particularly relevant, and the results provided will help clarify the technology used for its construction through spectral, XRD and thermoanalytic techniques. It is intended to establish similarities or differences between the studied subjects. This paper highlights the complementary nature of the various techniques: XRD for the identification of major crystalline phases, FTIR for a more detailed evaluation of the composition comprising non-crystalline and TGA phase for the quantitative determination of volatile phases (especially CO2 and H2O).


Roman mortars FTIR Mineralogical composition (XRD) Thermal properties (TG/DTG-DTA) 



Manny thanks to dr. arhg. Oana Neagoe and dr. arhg. Marin Neagoe from MUSEUM OF THE IRON GATES REGION, for provided samples.


  1. 1.
    Anastasiou M, Hasapius Th, Zorba T, Pavlidou E, Chrissafis K, Paraskevopoulos KM. TG-DTA and FTIR analyses of plasters from byzantine Monuments in Balkan region- comparative study. J Therm Anal Calorim. 2006;84–1:27–32.CrossRefGoogle Scholar
  2. 2.
    Vecchio S, La Gmestra A, Frezza A, Ferragina C. The use of thermoanalytical techniques in the characterization of ancient mortars. Thermochim Acta. 1993;227:215–23.CrossRefGoogle Scholar
  3. 3.
    Silva DA, Wenk HR, Monteiro PJM. Comparative investigation of mortars from Roman Colosseum and cistern. Thermochim Acta. 2005;438:35–40.CrossRefGoogle Scholar
  4. 4.
    Duran A, Perez-Maqueda LA, Poyato J. A thermal study approach to roman age wall painting mortars. J Therm Anal Calorim. 2010;99:803–9.CrossRefGoogle Scholar
  5. 5.
    Corti C, Rampazzi L, Bugini R, Sansonetti A, Biraghi M, Castelletti L, Nobile I, Orsenigo I. Thermal analysis and archaeological chronology: the ancient mortars of the site of Baradello (Como, Italy). Thermochim Acta. 2013;572:71–84.CrossRefGoogle Scholar
  6. 6.
    Biscontin G, Pellizon Birelli M, Zendri E. Caracterization of binders employed in the manufacture of Venetian histotical mortars. J Cult Herit. 2000;3:31–7.CrossRefGoogle Scholar
  7. 7.
    Vittorio G. I ponti romani. Catalogo generale, vol. 2. Treviso: Edizioni Canova; 1994.Google Scholar
  8. 8.
    Griggs FE. Trajan’s bridge: the world’s first long-span wooden bridge. Civ Eng Pract. 2007;22–1:19–50.Google Scholar
  9. 9.
    Nemţeanu R. Trajan’s bridge at Drobeta-Turnu Severin build by the architect Apollodorus. ARA Rep. 2011;2:113–26.Google Scholar
  10. 10.
    Bara M, Kaiser S. Roman bridges on the lower part of the Danube. Bull Transilv Univ Braşov—CIBv. 2015;8–57:193–8.Google Scholar
  11. 11.
    Serban M. Trajan’s Bridge over the Danube. IJNA. 2009;38–2:331–42.CrossRefGoogle Scholar
  12. 12.
    Vučković D, Mihajlović D, Karović G. Trajan’s Bridge on the Danube. The current results of underwater archaeological research. Istros. 2007;14:119–30.Google Scholar
  13. 13.
    Irimuş IA, Neagoe O. Vulnerabilities induced by relief in the location of the Roman geosites in Drobeta area. Riscuri şi Catastrofe. 2017;16(20–1):173–84.Google Scholar
  14. 14.
    Amer AA, El-Hoseny S. Properties and performance of metakaolin pozzolanic cement pastes. J Therm Anal Calorim. 2017;129:33–44.CrossRefGoogle Scholar
  15. 15.
    Kani EN, Allahverdi A, Provis JL. Calorimetric study of geopolymer binders based on natural Pozzolan. J Therm Anal Calorim. 2017;127:2181–90.CrossRefGoogle Scholar
  16. 16.
    Zhi Z, Ma B, Jian S, Guo Y, Yu H, Tan H, Chen F. Thermal analyses effect of cellulose ethers on hydration of high-strength gypsum. J Therm Anal Calorim. 2017;129:1547–54.CrossRefGoogle Scholar
  17. 17.
    Scheinherrova L, Dolezelova M, Havlın J, Trnık A. Thermal analysis of ternary gypsum-based binders stored in different environments. J Therm Anal Calorim. 2018;133:177–88.CrossRefGoogle Scholar
  18. 18.
    Moropoulou A, Bakolas A, Bisbikou K. Characterization of ancient byzantine and later historic mortars by thermal and X-ray diffraction techniques. Thermochim Acta. 1995;270:779–95.CrossRefGoogle Scholar
  19. 19.
    Bakolasa A, Biscontina G, Moropouloub A, Zendria E. Characterization of structural byzantine mortars by thermogravimetric analysis. Thermochim Acta. 1998;321:151–60.CrossRefGoogle Scholar
  20. 20.
    Montoya C, Lanas J, Arandigoyen M, Navarro I, Garčıa Casado PJ, Alvarez JI. Study of ancient dolomitic mortars of the church of Santa Marıa de Zamarce in Navarra (Spain): comparison with simulated standards. Thermochim Acta. 2003;398:107–22.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Research Center for Thermal Analysis in Environmental ProblemsWest University of TimisoaraTimişoaraRomania
  2. 2.Department of Scientific Research and Academic CreationWest University of TimisoaraTimişoaraRomania
  3. 3.County Directorate for Culture TimişTimişoaraRomania
  4. 4.Faculty of Industrial Chemistry and Environmental EngineeringPolitehnica University TimisoaraTimisoaraRomania

Personalised recommendations