Journal of Thermal Analysis and Calorimetry

, Volume 139, Issue 2, pp 849–854 | Cite as

Synthesis, characterization and in vitro antimicrobial prospecting of silver-doped ceria

  • Murillo Henrique de Matos RodriguesEmail author
  • Kellen Cristina Mesquita Borges
  • Maria Rita de Cássia Santos
  • Jupyracyara Jandyra de Carvalho Barros
  • Rosana de Fátima Gonçalves
  • Fabiana Villela Motta
  • Neftali L. V. Carreno
  • Mario GodinhoJr.


In this work, Ag-doped CeO2 samples containing 0.5 mol% Ag+ were successfully synthesized by the polymeric precursor method and then calcined at 400, 500, 600 and 700 °C for 2 h. X-ray diffraction and Raman spectra indicated that the crystals have a fluorite-type structure without the presence of other phases. The size of the Ce0.95Ag0.05O1.9−δ crystals increased from 6.61 to 27.46 nm upon increasing the thermal treatment temperature. The decomposition of the samples was examined by differential thermal analysis to determine the most suitable calcination temperature to apply to the materials and indicate the steps involved in obtaining Ag-doped ceria. Scanning electron microscopy images revealed small crystallite sizes, the presence of oxygen vacancies, structural stability and homogeneity. The Ag-doped ceria have shown effective and efficient antimicrobial activity, inhibiting the growth of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa bacteria. However, pure CeO2 displayed no antibacterial activity. Therefore, the satisfactory antimicrobial activity reported here can be attributed to the partial substitution of cerium ions by silver ions.


Ceria Silver Antimicrobial activity 



This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The authors acknowledge the support of the Brazilian research funding agencies CAPES/PROCAD: Process No. 2013/2998/2014 (Federal Agency for the Support and Improvement of Higher Education/National Program of Academic Cooperation) and CNPq Process Nos. 485518/2013-9 and 307054/2015-2 (National Council for Scientific and Technological Development).


  1. 1.
    Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156:128–45.PubMedGoogle Scholar
  2. 2.
    Lara HH, Garza-Trevino EN, Ixtepan-Turrent L, Singh DK. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol. 2011;9:30.Google Scholar
  3. 3.
    Sun K, Metzger DW. Influenza and Staphylococcus aureus coinfection: TLR9 at play. Trends Microbiol. 2019;27:383–4.PubMedGoogle Scholar
  4. 4.
    Vásquez-García A, Oliveira APSC, Mejia-Ballesteros JE, Godoy SHS, Barbieri E, Sousa RLM, Fernandes AM. Escherichia coli detection and identification in shellfish from southeastern Brazil. Aquaculture. 2019;504:158–63.Google Scholar
  5. 5.
    Weng MK, Brooks RB, Glowicz J, Keckler MS, Christensen BE, Tsai V, Mitchell CS, Wilson LE, Laxton R, Moulton-Meissner H, Fagan R. Outbreak investigation of Pseudomonas aeruginosa infections in a neonatal intensive care unit. Am J Infect Control. 2019. Scholar
  6. 6.
    Çolak H, Karaköse E, Duman F. High optoelectronic and antimicrobial performances of green synthesized ZnO nanoparticles using Aesculus hippocastanum. Environ Chem Lett. 2017;15:547.Google Scholar
  7. 7.
    Dasgupta N, Ramalingam C. Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation. Environ Chem Lett. 2016;14:477.Google Scholar
  8. 8.
    Fraise AP, Maillard J-Y, Sattar SA. Russell, Hugo & Ayliffe’s principles and practice of disinfection, preservation & sterilization. 5th ed. Chichester: Wiley; 2013.Google Scholar
  9. 9.
    Hoffmann S. Silver sulfadiazine: na antibacterial agent for topical use in burns. Scand J Plast Reconstr Surg. 1984;18:119–26.PubMedGoogle Scholar
  10. 10.
    Montes LF, Muchinik G, Fox CL Jr. Response of varicela zoster vírus and herpes zoster to silver sulfadiazine. Cutis. 1986;38:363–5.PubMedGoogle Scholar
  11. 11.
    Wu Q, Krol RV. Selective photoreduction of nitric oxide to nitrogen by nanostructured TiO2 photocatalysts: role of oxygen vacancies and iron dopant. J Am Chem Soc. 2012;134:9369–75.PubMedGoogle Scholar
  12. 12.
    Feng W, Sun LD, Zhang YW, Yan CH. Synthesis and assembly of rare earth nanostructures directed by the principle of coordination chemistry in solution-based process Coord. Chem Rev. 2010;254:1038–53.Google Scholar
  13. 13.
    Neri G, Bonavitta GA, Rizzo G, Galvagno S, Capone S, Siciliano P. Methanol gas-sensing properties of CeO2–Fe2O3 thin films. Sens Actuators B Chem. 2006;114:687–95.Google Scholar
  14. 14.
    Godinho M Jr, Gonçalves RF, Leite ER, Raubach CW, Carreno NLV, Probst LFD, Longo E, Fajardo HV. Gadolinium-doped cerium oxide nanorods: novel active catalysts for ethanol reforming. J Mater Sci. 2010;45:593–8.Google Scholar
  15. 15.
    Silva RF, Oliveira E, Sousa PCF, Neri CR, Serra OA. Diesel/biodiesel soot oxidation with CeO2 and CeO2-ZrO2-modified cordierites: a facile way of accounting for their catalytic ability in fuel combustion processes. Quím Nova. 2010;34:759–63.Google Scholar
  16. 16.
    Sousa PCF, Gomes LF, Oliveira KT, Neri CR, Serra OA. Amphiphilic cerium(III) b-dietonate as a catalyst for reducing diesel/biodiesel soot emissions. Appl Catal A. 2009;360:210–7.Google Scholar
  17. 17.
    Hoshino T, Kurata Y, Terasaki Y, Susa K. Mechanism of polishing of SiO2 films by CeO2 particles. J Non-Crystal Solids. 2001;283:129–36.Google Scholar
  18. 18.
    Lima JF, Serra OA. Cerium phosphate nanoparticles with low photocatalytic activity for UV light absorption application in photoprotection. Dyes Pigment. 2013;97:291–6.Google Scholar
  19. 19.
    Liu Z, Ding D, Liu M, Ding X, Chen D, Li X, Xia C, Liu M. High-performance, ceria-based solid oxide fuel cells fabricated at low temperatures. J Power Sour. 2013;241:454–9.Google Scholar
  20. 20.
    Tanwar K, Jaiswal N, Kumar D, Parkash O. Synthesis & characterization of Dy and Ca Co-doped ceria based solid electrolytes for IT-SOFCs. J Alloy Compd. 2016;684:683–90.Google Scholar
  21. 21.
    Chen X, Wang H, Gao S, Wu Z. Effect of pH value on the microstructure and NO(x) catalytic performance of titanate nanotubes loaded CeO2. J Colloid Interface Sci. 2012;377:131–6.PubMedGoogle Scholar
  22. 22.
    Munteanu G, Petrova P, Ivanov I, Liotta LF, Kaszkur Z, Tabakova T, Ilieva L. Temperature-programmed reduction of lightly yttrium-doped Au/CeO2 catalysts. J Therm Anal Calorim. 2018;131:145.Google Scholar
  23. 23.
    Zeng S, Zhang W, Guo S, Su H. Inverse rod-like CeO2 supported on CuO prepared by hydrothermal method for preferential oxidation of carbon monoxide. Catal Commun. 2012;23:62–6.Google Scholar
  24. 24.
    Stalin PMJ, Arjunan TV, Matheswaran MM, Sadanadan N. Experimental and theoretical investigation on the effects of lower concentration CeO2/water nanofluid in flat-plate solar collector. J Therm Anal Calorim. 2019;135:29.Google Scholar
  25. 25.
    Godinho M Jr, Ribeiro C, Gonçalves RF, Longo E, Leite ER. High-density nanoparticle ceramic bodies. J Therm Anal Calorim. 2013;111:1351–5.Google Scholar
  26. 26.
    Gonçalves RF, Castro DA, Santos MRC, Figueiredo AT, Barrado CM, Leite ER, Godinho M Jr. Estudo do crescimento de nanofitas de céria dopada com gadolínio por sistema de aquecimento por micro-ondas. Cerâmica. 2013;59:426–30.Google Scholar
  27. 27.
    Silva AGM, Dias A, Fajardo HV, Godinho M, Robles-Dutenhefner PA, Rodrigues T. Ce1-xSmxO1.9 − δ nanoparticles obtained by microwave-assisted hydrothermal processing: an afficient application for catalytic oxidation of α-bisabololl. Catal Sci Technol. 2014;4:814–21.Google Scholar
  28. 28.
    Bechambia O, Chalbib M, Najjara W, Sayadi S. Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity. Appl Surf Sci. 2015;347:414–20.Google Scholar
  29. 29.
    Singh B, Dubey AK, Kumar S, Saha N, Basu B, Gupta R. In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10 − xAgx (PO4)6(OH)2 (0.0 ≤ x ≤ 0.5) hydroxyapatites. Mater Sci Eng, C. 2011;31:1320–9.Google Scholar
  30. 30.
    Shima GI, Kima SH, Eoma HW, Kimb KM, Choia SY. Development of a transparent, non-cytotoxic, silver ion-exchanged glass with antimicrobial activity and low ion elution. Enzym Microb Technol. 2015;72:65–71.Google Scholar
  31. 31.
    Zeng C, Tian B, Zhang J. silver halide/silver iodide@silver composite with excellent visible light photocatalytic activity for methyl orange degradation. J Colloid Interface Sci. 2013;405:17–21.PubMedGoogle Scholar
  32. 32.
    Maensiri S, Masingboon C, Laokul P, Jareonboon W, Promarak V, Anderson PL, Seraphin S. Egg white synthesis and photoluminescence of platelike clusters of CeO2 nanoparticles. Cryst Growth Des. 2007;7:950–5.Google Scholar
  33. 33.
    Venkatesh KS, Gopinath K, Palani NS, Arumugam A, Jose SP, Bahadur SA, Ilangovan R. Plant pathogenic fungus F. solani mediated biosynthesis of nanoceria: antibacterial and antibiofilm activity. RSC Adv. 2016;48:42720–9.Google Scholar
  34. 34.
    Silva AGM, Batalha DC, Rodrigues TS, Candido EG, Luz SC, Freitas IC, Fonseca FC, Oliveira DC, Taylor JG, Córdoba TI, Camargo PHC, Fajardo HV. Sub-15 nm CeO2 nanowires as an efficient non-noble metal catalyst in the room-temperature oxidation of aniline. Catal Sci Technol. 2018;8:1828–39.Google Scholar
  35. 35.
    Ramasamy V, Vijayakshmi M. Effect of Zn doping on structural, optical and thermal properties of CeO2 nanoparticles. Superlattices Microstruct. 2015;85:510–21.Google Scholar
  36. 36.
    Lee Y, He G, Akey AJ, Si R, Flytzani-Stephanopoulos M, Herman IP. Raman analysis of mode softening in nanoparticle CeO2 − δ and Au-CeO2 − δ during CO oxidation. J Am Chem Soc. 2011;133:12952–5.PubMedGoogle Scholar
  37. 37.
    Tana N, Zhang ML, Li J, Li HJ, Li Y, Shen WJ. Morphology-dependent redox andcatalytic properties of CeO2 nanostructures: nanowires, nanorods and nanoparticles. Shen Catal Today. 2009;148:179–83.Google Scholar
  38. 38.
    Pan CS, Zhang DS, Shi LY, Fang JH. Template-free synthesis, controlled conversion, and CO oxidation properties of CeO2 nanorods, nanotubes, nanowires, and nanocubes. Eur J Inorg Chem. 2008;15:2429–36.Google Scholar
  39. 39.
    Wang L, Lv H, Li B, Zhao Y, Sun L. Synthesis and antibacterial activity of Ag/CeO2 hybrid architectures. J Sol-Gel Sci Technol. 2018;88:654.Google Scholar
  40. 40.
    Wang K, Su P, Li H, Wu Y, Zhang D, Feng H, Fan H. Synthesis, characterization and antimicrobial activity of hybrid-structured Ag@CeO2 nanoparticles. Chem Pap. 2019;73:1279.Google Scholar
  41. 41.
    Zou Q, Ma S, Zhan S. Superior photocatalytic disinfection effect of Ag-3D ordered mesoporous CeO2 under visible light. Appl Catal B Environ. 2018;224:27.Google Scholar
  42. 42.
    Hassan MS, Khan R, Amna T, Yang J, Le I, Sun M, EL-Newehy MH, Al-Deyab SS, Khil M. The influence of synthesis method on size and toxicity of CeO2 quantum dots: potential in the environmental remediation. Ceram Int. 2016;42:576–82.Google Scholar
  43. 43.
    Khan MM, Ansari SA, Lee J, Ansari MO, Lee J, Hwan M. Electrochemically active biofilm assisted synthesis of Ag@CeO2 nanocomposites for antimicrobial activity, photocatalysis and photoelectrodes. J Colloid Interface Sci. 2014;431:255–63.PubMedGoogle Scholar
  44. 44.
    Magdalane CM, Kaviyarasu K, Vijaya JJ, Siddhardha B, Jeyaraj B. Photocatalytic activity of binary metal oxide nanocomposites of CeO2/CdO nanospheres: investigation of optical and antimicrobial activity. J Photochem Photobiol, B. 2016;163:77–86.Google Scholar
  45. 45.
    Magdalane CM, Kaviyarasu K, Vijaya JJ, Siddhardha B, Jeyaraj B. Facile synthesis of heterostructured cerium oxide/yttrium oxide nanocomposite in UV light induced photocatalytic degradation and catalytic reduction: synergistic effect of antimicrobial studies. J Photochem Photobiol, B. 2017;173:23–34.Google Scholar
  46. 46.
    Bakkiyaraj R, Balakrishnan M, Bharath G, Ponpandian N. Facile synthesis, structural characterization, photocatalytic and antimicrobial activities of Zr doped CeO2 nanoparticles. J Alloys Compd. 2017;724:555–64.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Murillo Henrique de Matos Rodrigues
    • 1
    Email author
  • Kellen Cristina Mesquita Borges
    • 1
  • Maria Rita de Cássia Santos
    • 1
  • Jupyracyara Jandyra de Carvalho Barros
    • 2
  • Rosana de Fátima Gonçalves
    • 1
  • Fabiana Villela Motta
    • 3
  • Neftali L. V. Carreno
    • 4
  • Mario GodinhoJr.
    • 1
  1. 1.Departamento de QuímicaUniversidade Federal de GoiásCatalãoBrazil
  2. 2.Departamento de Ciências BiológicasUniversidade Federal de GoiásCatalãoBrazil
  3. 3.Departamento de Engenharia de MateriaisUniversidade Federal do Rio Grande do NorteNatalBrazil
  4. 4.Graduate Program in Materials Science and EngineeringFederal University of PelotasPelotasBrazil

Personalised recommendations