Advertisement

Experimental study on combustion behavior of mixed carbonate solvents and separator used in lithium-ion batteries

  • Jie Mei
  • Hong Liu
  • Mingyi ChenEmail author
Article
  • 27 Downloads

Abstract

In this article, the combustion characteristics of different carbonate mixed solvents are considered by means of cone calorimeter. The coexistence system is composed of ternary carbonate mixed solvent and 1-g 2325 separator. Then, the comparison between coexistence systems and corresponding solvent mixtures is conducted. Experimental findings reveal that the combustion hazard of solvent mixtures is dominated by the component which is more volatile. The 2325 separator is not completely combusted when added to the ternary mixed solvent. The effects of 2325 separator on combustion of four ternary carbonate mixed solvents are different. It can be sure that the hazard posed by the addition of 2325 separator is all increased. More details about these variations have been analyzed.

Keywords

Lithium-ion battery Electrolyte Separator Heat release rate Combustion 

List of symbols

\(\Delta h_{\text{c,eff}}\)

Effective heat of combustion (kJ g−1)

Hvap

Heat of vaporization

mI

Initial mass (g)

mA

Ash mass (g)

\(\dot{q}\)

Heat release rate (kW)

Qt

Total heat released (kJ)

t

Time (s)

T

Temperature (K)

Ρ

Density (g cm−3)

Abbreviations

DEC

Diethyl carbonate

DMC

Dimethyl carbonate

EC

Ethylene carbonate

EMC

Ethyl methyl carbonate

FP

Flash point

HRR

Heat release rate

ISO

International Organization for Standardization

LIB

Lithium-ion battery

LiPF6

Lithium hexafluorophosphate

MLR

Mass loss rate

THR

Total heat released

Notes

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2018YFC0808600) and Programs of Senior Talent Foundation of Jiangsu University (17JDG036).

References

  1. 1.
    Armand M, Tarascon J-M. Building better batteries. Nature. 2008;451:652–7.CrossRefGoogle Scholar
  2. 2.
    Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928–35.CrossRefGoogle Scholar
  3. 3.
    Wang Q, Huang P, Ping P, Du Y, Li K, Sun J. Combustion behavior of lithium iron phosphate battery induced by external heat radiation. J Loss Prev Process Ind. 2017;49:961–9.CrossRefGoogle Scholar
  4. 4.
    Gachot G, Grugeon S, Eshetu GG, Mathiron D, Ribière P, Armand M, Laruelle S. Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis. Electrochim Acta. 2012;83:402–9.CrossRefGoogle Scholar
  5. 5.
    Mikolajczak C, Kahn M, White K, Long RT. Lithium-ion batteries hazard and use assessment. Berlin: Springer; 2012.Google Scholar
  6. 6.
    Wang Z, Ouyang D, Chen M, Wang X, Zhang Z, Wang J. Fire behavior of lithium-ion battery with different states of charge induced by high incident heat fluxes. J Therm Anal Calorim. 2019;136(6):2239–47.CrossRefGoogle Scholar
  7. 7.
    Shan MX. Analysis on thermal runaway of lithium ion battery. In: International conference on applied mechanics, mechanical and materials engineering; 2016.Google Scholar
  8. 8.
    Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 2018;10:246–67.CrossRefGoogle Scholar
  9. 9.
    Chung Y-H, Jhang W-C, Chen W-C, Wang Y-W, Shu C-M. Thermal hazard assessment for three C rates for a Li-polymer battery by using vent sizing package 2. J Therm Anal Calorim. 2017;127(1):809–17.CrossRefGoogle Scholar
  10. 10.
    Zheng S, Wang L, Feng X, He X. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries. J Power Sources. 2018;378:527–36.CrossRefGoogle Scholar
  11. 11.
    Liu J, Wang Z, Gong J, Liu K, Wang H, Guo L. Experimental study of thermal runaway process of 18650 lithium-ion battery. Materials. 2017;10(3):230.CrossRefGoogle Scholar
  12. 12.
    Wu T, Chen H, Wang Q, Sun J. Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes. J Hazard Mater. 2018;344:733–41.CrossRefGoogle Scholar
  13. 13.
    Lu T-Y, Chiang C-C, Wu S-H, Chen K-C, Lin S-J, Wen C-Y, Shu C-M. Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter. J Therm Anal Calorim. 2013;114(3):1083–8.CrossRefGoogle Scholar
  14. 14.
    Huang P, Ping P, Li K, Chen H, Wang Q, Wen J, Sun J. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl Energy. 2016;183:659–73.CrossRefGoogle Scholar
  15. 15.
    Feng X, Sun J, Ouyang M, Wang F, He X, Lu L, Peng H. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources. 2015;275:261–73.CrossRefGoogle Scholar
  16. 16.
    Feng X, Fang M, He X, Ouyang M, Lu L, Wang H, Zhang M. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sources. 2014;255:294–301.CrossRefGoogle Scholar
  17. 17.
    Fu Y, Lu S, Li K, Liu C, Cheng X, Zhang H. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter. J Power Sources. 2015;273:216–22.CrossRefGoogle Scholar
  18. 18.
    Huang P, Wang Q, Li K, Ping P, Sun J. The combustion behavior of large scale lithium titanate battery. Sci Rep. 2015;5:7788.CrossRefGoogle Scholar
  19. 19.
    Chen M, Zhou D, Chen X, Zhang W, Liu J, Yuen R, Wang J. Investigation on the thermal hazards of 18650 lithium ion batteries by fire calorimeter. J Therm Anal Calorim. 2015;122(2):755–63.CrossRefGoogle Scholar
  20. 20.
    Ping P, Wang Q, Huang P, Li K, Sun J, Kong D, Chen C. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test. J Power Sources. 2015;285:80–9.CrossRefGoogle Scholar
  21. 21.
    Chen M, Yuen R, Wang J. An experimental study about the effect of arrangement on the fire behaviors of lithium-ion batteries. J Therm Anal Calorim. 2017;129(1):181–8.CrossRefGoogle Scholar
  22. 22.
    Ouyang D, Chen M, Wang J. Fire behaviors study on 18650 batteries pack using a cone-calorimeter. J Therm Anal Calorim. 2019;136(6):2281–94.CrossRefGoogle Scholar
  23. 23.
    Chen M, He Y, De Zhou C, Richard Y, Wang J. Experimental study on the combustion characteristics of primary lithium batteries fire. Fire Technol. 2014;52(2):365–85.CrossRefGoogle Scholar
  24. 24.
    Larsson F, Andersson P, Blomqvist P, Lorén A, Mellander B-E. Characteristics of lithium-ion batteries during fire tests. J Power Sources. 2014;271:414–20.CrossRefGoogle Scholar
  25. 25.
    Hess S, Wohlfahrt-Mehrens M, Wachtler M. Flammability of Li-ion battery electrolytes: flash point and self-extinguishing time measurements. J Electrochem Soc. 2015;162(2):A3084–97.CrossRefGoogle Scholar
  26. 26.
    Ouyang D, Chen M, Wei R, Wang Z, Wang J. A study on the fire behaviors of 18650 battery and batteries pack under discharge. J Therm Anal Calorim. 2019;136(5):1915–26.CrossRefGoogle Scholar
  27. 27.
    Somandepalli V, Marr K, Horn Q. Quantification of combustion hazards of thermal runaway failures in lithium-ion batteries. SAE Int J Altern Powertrains. 2014;3(1):98–104.CrossRefGoogle Scholar
  28. 28.
    Chen M, Dongxu O, Cao S, Liu J, Wang Z, Wang J. Effects of heat treatment and SOC on fire behaviors of lithium-ion batteries pack. J Therm Anal Calorim. 2019;136(6):2429–37.CrossRefGoogle Scholar
  29. 29.
    Afzal A, Samee ADM, Razak RKA, Ramis MK. Effect of spacing on thermal performance characteristics of Li-ion battery cells. J Therm Anal Calorim. 2019;135(3):1797–811.CrossRefGoogle Scholar
  30. 30.
    Ribière P, Grugeon S, Morcrette M, Boyanov S, Laruelle S, Marlair G. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ Sci. 2012;5(1):5271–80.CrossRefGoogle Scholar
  31. 31.
    Zhang W, Chen X, Chen Q, Ding C, Liu J, Chen M, Wang J. Combustion calorimetry of carbonate electrolytes used in lithium ion batteries. J Fire Sci. 2014;33(1):22–36.CrossRefGoogle Scholar
  32. 32.
    Harris SJ, Timmons A, Pitz WJ. A combustion chemistry analysis of carbonate solvents used in Li-ion batteries. J Power Sources. 2009;193(2):855–8.CrossRefGoogle Scholar
  33. 33.
    Fu Y, Lu S, Shi L, Cheng X, Zhang H. Combustion characteristics of electrolyte pool fires for lithium ion batteries. J Electrochem Soc. 2016;163(9):A2022–8.CrossRefGoogle Scholar
  34. 34.
    Eshetu GG, Grugeon S, Laruelle S, Boyanov S, Lecocq A, Bertrand J-P, Marlair G. In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries. Phys Chem Chem Phys. 2013;15(23):9145–55.CrossRefGoogle Scholar
  35. 35.
    Ravdel B, Abraham KM, Gitzendanner R, DiCarlo J, Lucht B, Campion C. Thermal stability of lithium-ion battery electrolytes. J Power Sources. 2003;119–121:805–10.CrossRefGoogle Scholar
  36. 36.
    Eshetu GG, Bertrand J-P, Lecocq A, Grugeon S, Laruelle S, Armand M, Marlair G. Fire behavior of carbonates-based electrolytes used in Li-ion rechargeable batteries with a focus on the role of the LiPF 6 and LiFSI salts. J Power Sources. 2014;269:804–11.CrossRefGoogle Scholar
  37. 37.
    Huang Q, Yan M, Jiang Z. Thermal study of organic electrolytes with fully charged cathodic materials of lithium-ion batteries. J Solid State Electrochem. 2007;12(6):671–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of the Environment and Safety EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations