Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 3, pp 2057–2064 | Cite as

Tb–Al–Si systems

Experimental study of the liquid–solid phase equilibria in the Al-rich corner
  • Anna Maria CardinaleEmail author
  • Nadia Parodi
Article
  • 35 Downloads

Abstract

There are presently limited information regarding the liquid–solid equilibria at the (Al)-rich region of the different R–Al–Si systems (R = rare earth elements). These data, along with the ternary systems isothermal section, are needed to outline the design, plan and develop new Al–Si-based alloys. The effect of the lanthanide terbium addition to the Al–Si system, in the Al-rich corner, has been experimentally studied. The constitution of the alloys and the liquidus surface projection have been determined by means of differential thermal analysis, scanning electron microscopy, electron microprobe analysis and X-ray powder diffraction. In the system investigated have been identified five regions of primary crystallization: TbAl(3 − x)Six, Tb2Al3Si2, TbAlxSi2 − x, (Al) and (Si).

Keywords

Al–Si alloys Rare earth Thermal analysis 

Notes

References

  1. 1.
    Slattery BE, Perry T, Edrisy A. Microstructural evolution of a eutectic Al–Si engine subjected to severe running conditions. Mat Sci Eng. 2009;512:76–81.CrossRefGoogle Scholar
  2. 2.
    Miller WS, Zhuang L, Bottema J, Wittebrood AJ, De Smet P, Haszler A, Vieregge A. Recent development in aluminum alloys for the automotive industry. Mat Sci Eng A. 2000;280:37–49.CrossRefGoogle Scholar
  3. 3.
    Zhu M, Jian Z, Yao L, Liu C, Yang G, Zhou Y. Effect of mischmetal modification treatment on the microstructure, tensile properties, and fracture behavior of Al–7.0%Si–0.3%Mg foundry aluminum alloys. J Mater Sci. 2011;46:2685–94.CrossRefGoogle Scholar
  4. 4.
    Mazahery A, Shabani MO. Modification mechanism and microstructural characteristics of eutectic Si in casting Al–Si alloys: a review on experimental and numerical studies. J Minerals Metals Mater Soc (TMS). 2014;l66(5):726–38.CrossRefGoogle Scholar
  5. 5.
    Traverso P, Spiniello R, Monaco L. Corrosion inhibition of Al 6061T6/Al2O3p 10% (v/v) composite in 3.5% NaCl solution with addition of cerium (III) chloride. Surf Interface Anal. 2002;34:185–8.CrossRefGoogle Scholar
  6. 6.
    Heusler L, Schneider W. Influence of alloying elements on the thermal analysis results of Al-Si cast alloys. J. of Light Metals. 2002;2:17–26.CrossRefGoogle Scholar
  7. 7.
    Qiu H, Yan H, Hu Z. Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al–7Si–0.7 Mg alloys. J Alloys Compd. 2013;567:77–81.CrossRefGoogle Scholar
  8. 8.
    Nogita K, Yasuda H, Yoshiya M, McDonald SD, Uesugi K, Tacheuchi A, Suzuki Y. The role of trace element segregation in the eutectic modification of hypoeutectic Al–Si alloys. J Alloys Compd. 2010;489:415–20.CrossRefGoogle Scholar
  9. 9.
    Cardinale AM, Macciò D, Luciano G, Canepa E, Traverso P. Thermal and corrosion behavior of as cast Al–Si alloys with rare earth. J Alloys Compd. 2016.  https://doi.org/10.1016/j.jallcom.2016.11.066.CrossRefGoogle Scholar
  10. 10.
    Li Q, Li B, Li J, Zhu Y, Xia T. Effect of yttrium addition on the microstructures and mechanical properties of hypereutectic Al–20Si alloy. Mater Sci Eng A. 2018;722:47–57.CrossRefGoogle Scholar
  11. 11.
    Mahmoud MG, Samuel AM, Doty HW, Valtierra S, Samuel FH. Effect of solidification rate and rare earth metal addition on the microstructural characteristics and porosity formation in A356 alloy. Adv Mater Sci Eng. 2017.  https://doi.org/10.1155/2017/5086418.CrossRefGoogle Scholar
  12. 12.
    Ahmad R, Asmael MBA, Shahizan NR, Gandouz S. Reduction in secondary dendrite arm spacing in cast eutectic Al–Si piston alloys by cerium addition. Int J Minerals Metall Mater. 2017;24:91.CrossRefGoogle Scholar
  13. 13.
    Cardinale AM, Parodi N. R–Al–Si systems (R: Pr, Nd): experimental investigation of phase equilibria in the Al-rich corner. J Therm Anal Calorim. 2018;134:1327.  https://doi.org/10.1007/s10973-018-7536-9.CrossRefGoogle Scholar
  14. 14.
    Markoli B, Spaic S, Zupanic F. The constitution of alloys in the Al-rich corner of the Al–Si–Sm ternary system. Z Metallkde. 2001;92:1098–102.Google Scholar
  15. 15.
    Cardinale AM, Parodi N, Saccone A. The 500 C isothermal section of the Tb–Al–Si system and thermal behavior of selected Al-rich alloys. J Therm Anal Calorim. 2017;130:525.CrossRefGoogle Scholar
  16. 16.
    Pukas S, Lasocha W, Gladyshevskii R. Phase equilibria in the Er–Al–Si system at 873 K. CALPHAD. 2009;33:23–6.CrossRefGoogle Scholar
  17. 17.
    Murray JL, McAlister AJ. The Al–Si (Aluminum–Silicon) system. Bull Alloy Phase Diagr. 1984;5:74–84.CrossRefGoogle Scholar
  18. 18.
    Okamoto H. Supplemental literature review of binary phase diagrams: Al–Bi, Al–Dy, Al–Tb, Al–Tb, C–Mn, Co–Ga, Cr–Hf, Cr–Na, Er–H, Er–Zr, H–Zr, and Ni–Pb. J Phase Equilibria Diffus. 2014;35:343–54.CrossRefGoogle Scholar
  19. 19.
    Kim J, Jung IH. Critical evaluation and thermodynamic optimization of the Si–RE systems: part II. Si–RE system (RE = Gd, Tb, Dy, Ho, Er, Tm, Lu and Y). J Chem Thermodyn. 2015;81:273–97.CrossRefGoogle Scholar
  20. 20.
    Kraus W, Nolze G. Powder cell for windows. Berlin; 1999.Google Scholar
  21. 21.
    King G, Schwarzenbach LD, Xtal3.7 system, In: Hall SR, du Boilay DJ, Olthof-Hazekamp R, editors. Crawley: University of Western; 2000.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly

Personalised recommendations