Advertisement

Evaluating redox reactivity of CuO-based oxygen carriers synthesized with organometallic precursors

  • 74 Accesses

  • 1 Citations

Abstract

The highly efficient CuO-based oxygen carrier is prospectively applied in chemical-looping combustion process. The metal precursors and synthetic methods greatly affect the performance of the synthetic CuO-based oxygen carriers. The inorganic precursors are commonly used to synthesize CuO-based oxygen carriers, while the organometallic precursors are scarcely adopted. In this work, the organometallic copper precursor [copper (II) acetate] and three other different organometallic support precursors (magnesium l-lactate hydrate, silicon tetraacetate and magnesium acetate) were adopted to produce CuO-based oxygen carriers via the methods of wet-mixing and spray-drying, respectively. It is found that the synthetic oxygen carriers incorporated with inert supports (MgO and SiO2) exhibit remarkably stable redox reactivity, compared to the pure CuO. Moreover, the redox reactivity of the MgO-incorporated CuO-based oxygen carriers is superior to that of the SiO2-incorporated CuO-based oxygen carriers. It is mainly attributed to the higher Tammann temperature of MgO (1549 K) compared to that of SiO2 (937 K), which more effectively contribute CuO to inhibit particle growth and agglomeration due to sintering. Additionally, the MgO-incorporated CuO-based oxygen carriers prepared via scalable spray-drying method also exhibit the relatively high redox reactivity. It indicates that the spray-dried, synthetic CuO-based oxygen carriers from organometallic precursors possess the potential to be industrialized amplification.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Psarras PC, Comello S, Bains P, Charoensawadpong P, Reichelstein S, Wilcox J. Carbon capture and utilization in the industrial sector. Environ Sci Technol. 2017;51:11440–9.

  2. 2.

    Ma X, Li Y, Duan L, Anthony E, Liu H. CO2 capture performance of calcium-based synthetic sorbent with hollow core–shell structure under calcium looping conditions. Appl Energy. 2018;225:402–12.

  3. 3.

    Lackner KS. A guide to CO2 sequestration. Science. 2003;300:1677.

  4. 4.

    Guo Q, Liu Y, Tian H. Recent advances on preparation and characteristics of oxygen carrier particles. Int Rev Chem Eng. 2009;1:357–68.

  5. 5.

    Sun J, Liu W, Hu Y, Wu J, Li M, Yang X, Wang W, Xu M. Enhanced performance of extruded–spheronized carbide slag pellets for high temperature CO2 capture. Chem Eng J. 2016;285:293–303.

  6. 6.

    Yang Y, Liu W, Hu Y, Sun J, Tong X, Chen Q, Li Q. One-step synthesis of porous Li4SiO4-based adsorbent pellets via graphite moulding method for cyclic CO2 capture. Chem Eng J. 2018;353:92–9.

  7. 7.

    Sun J, Liang C, Tong X, Guo Y, Li W, Zhao C, Zhang J, Lu P. Evaluation of high-temperature CO2 capture performance of cellulose-templated CaO-based pellets. Fuel. 2019;239:1046–54.

  8. 8.

    Cho P, Mattisson T, Lyngfelt A. Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion. Fuel. 2004;83:1215–25.

  9. 9.

    Guo Y, Zhao C, Sun J, Li W, Lu P. Facile synthesis of silica aerogel supported K2CO3 sorbents with enhanced CO2 capture capacity for ultra-dilute flue gas treatment. Fuel. 2018;215:735–43.

  10. 10.

    Sun J, Yang Y, Guo Y, Xu Y, Li W, Zhao C, Liu W, Lu P. Stabilized CO2 capture performance of wet mechanically activated dolomite. Fuel. 2018;222:334–42.

  11. 11.

    Sun J, Sun Y, Yang Y, Tong X, Liu W. Plastic/rubber waste-templated carbide slag pellets for regenerable CO2 capture at elevated temperature. Appl Energy. 2019;242:919–30.

  12. 12.

    Fan L, Zeng L, Wang W, Luo S. Chemical looping processes for CO2 capture and carbonaceous fuel conversion–prospect and opportunity. Energy Environ Sci. 2012;5:7254–80.

  13. 13.

    Song T, Shen L. Review of reactor for chemical looping combustion of solid fuels. Int J Greenh Gas Control. 2018;76:92–110.

  14. 14.

    E. Ksepko, J. Klimontko, A. Kwiecinska, Industrial wastewater treatment wastes used as oxygen carriers in energy generation processes. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08214-8.

  15. 15.

    Siriwardane R, Tian H, Richards G, Simonyi T, Poston J. Chemical-looping combustion of coal with metal oxide oxygen carriers. Energy Fuels. 2009;23:3885–92.

  16. 16.

    Mei D, Abad A, Zhao H, Yan S, Wang B, Yuan Q. Extension and evaluation of a macroscopic model for syngas-fueled chemical looping combustion. Chem Eng Process. 2018;133:106–16.

  17. 17.

    Wang B, Li J, Ding N, Mei D, Zhao H, Zheng C. Chemical looping combustion of a typical lignite with a CaSO4–CuO mixed oxygen carrier. Energy Fuels. 2017;31:13942–54.

  18. 18.

    Hossain MM, Lopez D, Herrera J, de Lasa HI. Nickel on lanthanum-modified γ-Al2O3 oxygen carrier for CLC: reactivity and stability. Catal Today. 2009;143:179–86.

  19. 19.

    Cho P, Mattisson T, Lyngfelt A. Defluidization conditions for a fluidized bed of iron oxide-, nickel oxide-, and manganese oxide-containing oxygen carriers for chemical-looping combustion. Ind Eng Chem Res. 2006;45:968–77.

  20. 20.

    Abad A, García-Labiano F, de Diego LF, Gayán P, Adánez J. Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO + H2) for chemical-looping combustion. Energy Fuels. 2007;21:1843–53.

  21. 21.

    T. Mattisson, A. Järdnäs, A. Lyngfelt, Reactivity of some metal oxides supported on alumina with alternating methane and oxygen application for chemical-looping combustion., Energ Fuel. 2003;17:643-51.

  22. 22.

    Hoteit A, Chandel MK, Delebarre A. Nickel- and copper-based oxygen carriers for chemical looping combustion. Chem Eng Technol. 2009;32:443–9.

  23. 23.

    Wang B, Li H, Ding N, Shen Q, Zhao H, Zheng C. Chemical looping combustion characteristics of coal with Fe2O3 oxygen carrier. J Therm Anal Calorim. 2018;132:17–27.

  24. 24.

    Cui Y, Cao Y, Pan W. Preparation of copper-based oxygen carrier supported by titanium dioxide. J Therm Anal Calorim. 2013;114:1089–97.

  25. 25.

    Garcia-Labiano F, De Diego L, Adanez J, Abad A, Gayan P. Reduction and oxidation kinetics of a copper-based oxygen carrier prepared by impregnation for chemical-looping combustion. Ind Eng Chem Res. 2004;43:8168–77.

  26. 26.

    Imtiaz Q, Kierzkowska AM, Broda M, Müller CR. Synthesis of Cu-rich, Al2O3-stabilized oxygen carriers using a coprecipitation technique: redox and carbon formation characteristics. Environ Sci Technol. 2012;46:3561–6.

  27. 27.

    Adánez J, Gayán P, Celaya J, de Diego LF, García-Labiano F, Abad A. Chemical looping combustion in a 10 kWth prototype using a CuO/Al2O3 oxygen carrier: effect of operating conditions on methane combustion. Ind Eng Chem Res. 2006;45:6075–80.

  28. 28.

    Abad A, Adánez J, García-Labiano F, de Diego LF, Gayán P. Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier. Combust Flame. 2010;157:602–15.

  29. 29.

    Forero C, Gayán P, García-Labiano F, De Diego L, Abad A, Adánez J. High temperature behaviour of a CuO/γAl2O3 oxygen carrier for chemical-looping combustion. Int J Greenh Gas Control. 2011;5:659–67.

  30. 30.

    de Diego LF, Gayán P, García-Labiano F, Celaya J, Abad A, Adánez J. Impregnated CuO/Al2O3 oxygen carriers for chemical-looping combustion: avoiding fluidized bed agglomeration. Energy Fuels. 2005;19:1850–6.

  31. 31.

    Corbella B, De Diego L, García-Labiano F, Adánez J, Palacios J. Characterization and performance in a multicycle test in a fixed-bed reactor of silica-supported copper oxide as oxygen carrier for chemical-looping combustion of methane. Energy Fuels. 2006;20:148–54.

  32. 32.

    Zafar Q, Mattisson T, Gevert B. Integrated hydrogen and power production with CO2 capture using chemical-looping reforming redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support. Ind Eng Chem Res. 2005;44:3485–96.

  33. 33.

    Zafar Q, Mattisson T, Gevert B. Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4. Energy Fuels. 2006;20:34–44.

  34. 34.

    de Diego LF, García-Labiano F, Adánez J, Gayán P, Abad A, Corbella BM, María Palacios J. Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel. 2004;83:1749–57.

  35. 35.

    Lambert A, Briault P, Comte E. Spinel mixed oxides as oxygen carriers for chemical looping combustion. Energy Procedia. 2011;4:318–23.

  36. 36.

    Chuang S, Dennis J, Hayhurst A, Scott S. Development and performance of Cu-based oxygen carriers for chemical-looping combustion. Combust Flame. 2008;154:109–21.

  37. 37.

    Mattisson T, Lyngfelt A, Leion H. Chemical-looping with oxygen uncoupling for combustion of solid fuels. Int J Greenh Gas Control. 2009;3:11–9.

  38. 38.

    Arjmand M, Keller M, Leion H, Mattisson T, Lyngfelt A. Oxygen release and oxidation rates of MgAl2O4-supported CuO oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU). Energy Fuels. 2012;26:6528–39.

  39. 39.

    Arjmand M, Azad A-M, Leion H, Lyngfelt A, Mattisson T. Prospects of Al2O3 and MgAl2O4-supported CuO oxygen carriers in chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). Energy Fuels. 2011;25:5493–502.

  40. 40.

    Qin C, Liu W, An H, Yin J, Feng B. Fabrication of CaO-based sorbents for CO2 capture by a mixing method. Environ Sci Technol. 2012;46:1932–9.

  41. 41.

    Liu W, Feng B, Wu Y, Wang G, Barry J, Diniz da Costa JC. Synthesis of sintering-resistant sorbents for CO2 capture. Environ Sci Technol. 2010;44:3093–7.

  42. 42.

    Liu W, Low NW, Feng B, Wang G, Diniz da Costa JC. Calcium precursors for the production of CaO sorbents for multicycle CO2 capture. Environ Sci Technol. 2009;44:841–7.

  43. 43.

    Guo Y, Tan C, Sun J, Li W, Zhao C, Zhang J, Lu P. Nano-structured MgO sorbents derived from organometallic magnesium precursors for post-combustion CO2 capture. Energy Fuels. 2018;32:6910–7.

  44. 44.

    Qin C, Yin J, Liu W, An H, Feng B. Behavior of CaO/CuO based composite in a combined calcium and copper chemical looping process. Ind Eng Chem Res. 2012;51:12274–81.

  45. 45.

    Ishida M, Jin H. A novel chemical-looping combustor without NOx formation. Ind Eng Chem Res. 1996;35:2469–72.

  46. 46.

    Hosseini D, Imtiaz Q, Abdala P, Yoon S, Kierzkowska A, Weidenkaff A, Müller C. CuO promoted Mn2O3-based materials for solid fuel combustion with inherent CO2 capture. J Mater Chem A. 2015;3:10545–50.

  47. 47.

    Tian S, Jiang J, Yan F, Li K, Chen X. Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag. Environ Sci Technol. 2015;49:7464–72.

  48. 48.

    Zhao H, Liu L, Xu D, Zheng C, Liu G, Jiang L. NiO/NiAl2O4 oxygen carriers prepared by sol–gel for chemical-looping combustion fueled by gas. J Fuel Chem Technol. 2008;36:261–6.

  49. 49.

    Aihara M, Nagai T, Matsushita J, Negishi Y, Ohya H. Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction. Appl Energy. 2001;69:225–38.

  50. 50.

    Liu W, Yin J, Qin C, Feng B, Xu M. Synthesis of CaO-based sorbents for CO2 capture by a spray-drying technique. Environ Sci Technol. 2012;46:11267–72.

Download references

Acknowledgements

The project was supported by National Natural Science Foundation of China (51806109 and 51776083).

Author information

Correspondence to Jian Sun or Wengqiang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Yang, Y. & Liu, W. Evaluating redox reactivity of CuO-based oxygen carriers synthesized with organometallic precursors. J Therm Anal Calorim 139, 885–893 (2020) doi:10.1007/s10973-019-08492-2

Download citation

Keywords

  • CuO-based oxygen carriers
  • Organometallic precursors
  • Wet-mixing
  • Spray-drying