Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 3, pp 1853–1861 | Cite as

Thermal and evolved gas analyses of decomposition of ammonium dinitramide-based ionic liquid propellant using TG–DSC–HRTOFMS

  • Yu-ichiro IzatoEmail author
  • Kento Shiota
  • Kenta Satoh
  • Takashi Satoh
  • Yukinori Yahata
  • Hiroto Habu
  • Atsumi Miyake
Article

Abstract

Thermal and evolved gas analyses were carried out to assess the decomposition of an ionic liquid propellant consisting of ammonium dinitramide (ADN), methylammonium nitrate (MMAN) and urea, using thermogravimetry–differential scanning calorimetry–high-resolution time-of-flight mass spectrometry (TG–DSC–HRTOFMS). This technique simultaneously assesses the thermal and evolved gas behavior and is able to distinguish between products having similar mass-to-charge ratios, based on accurate mass determinations. ADN/MMAN and ADN/MMAN/urea mixtures were found to decompose to form NH3, H2O, HCN, CO, N2, CH2O, CH3NH2, HNCO, CO2, N2O and HNO3, and possible reaction schemes for the decomposition processes were developed. Interactions between ADN and MMAN appear to enhance the generation of N2, while the presence of urea reduces the net exothermic heat of reaction due to the endothermic pyrolysis reaction of urea to NH3 and HNCO, followed by the reaction HNCO + H2O → NH3 + CO2.

Keywords

Ammonium dinitramide Ionic liquid propellant Thermal decomposition Evolved gas analysis TG–DSC–HRTOFMS 

Notes

Acknowledgements

This research was supported by JSPS KAKENHI Grant Number 17H00844.

Supplementary material

10973_2019_8475_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1450 kb)

References

  1. 1.
    Larsson A, Wingborg N. Green propellants based on ammonium dinitramide (ADN). In: Hall J, editor. Advances in spacecraft technologies. Rijeka: InTech; 2011. p. 139–56.Google Scholar
  2. 2.
    Nagamachi MY, Oliveira JI, Kawamoto AM, Dutra RCL. ADN- The new oxidizer around the corner for an environmentally friendly smokeless propellant. J Aerosp Technol Manag. 2009;1:153–60.CrossRefGoogle Scholar
  3. 3.
    Östmark H, Bemm U, Langlet A, Sanden R, Wingborg N. The properties of ammonium dinitramide (ADN): part 1, basic properties and spectroscopic data. J Energ Mater. 2000;18:123–8.CrossRefGoogle Scholar
  4. 4.
    Negri M, Wilhelm M, Hendrich C, Wingborg N, Gediminas L, Adelöw L, Maleix C, Chabernaud P, Brahmi R, Beauchet R, Batonneau Y, Kappenstein C, Koopmans R-J, Schuh S, Bartok T, Scharlemann C, Gotzig U, Schwentenwein M. New technologies for ammonium dinitramide based monopropellant thrusters—the project RHEFORM. Acta Astronaut. 2018;143:105–17.CrossRefGoogle Scholar
  5. 5.
    Shiota K, Itakura M, Izato Y, Matsunaga H, Habu H, Miyake A. Effects of amide compounds and nitrate salts on the melting point depression of ammonium dinitramide. Sci Technol Energ Mater. 2018;79:137–41.Google Scholar
  6. 6.
    Matsunaga H, Habu H, Miyake A. Preparation and thermal decomposition behavior of ammonium dinitramide-based energetic ionic liquid propellant. Sci Technol Energ Mater. 2017;78:65–70.Google Scholar
  7. 7.
    Matsunaga H, Katoh K, Habu H, Noda M, Miyake A. preparation and thermal decomposition behavior of high-energy ionic liquids based on ammonium dinitramide and amine nitrates. Trans JSASS Aerospace Technol Jpn. 2018;16:82–92.Google Scholar
  8. 8.
    Matsunaga H, Habu H, Miyake A. Thermal decomposition mechanism of ammonium dinitramide. In: Proceedings of the 16th seminar on new trends in research of energetic materials; 2013. p. 268–276.Google Scholar
  9. 9.
    Matsunaga H, Katoh K, Habu H, Noda M, Miyake A. Thermal behavior of ammonium dinitramide and amine nitrate mixtures. J Therm Anal Calorim. 2019;135:2677–85.CrossRefGoogle Scholar
  10. 10.
    Ide Y, Takahashi T, Iwai K, Nozoe K, Habu H, Tokudome S. Potential of ADN-based ionic liquid propellant for spacecraft propulsion. Procedia Eng. 2015;99:332–7.CrossRefGoogle Scholar
  11. 11.
    Izato Y, Miyake A. Kinetic analysis of the thermal decomposition of liquid ammonium nitrate based on thermal analysis and detailed reaction simulations. J Therm Anal Calorim. 2018;134:813–23.CrossRefGoogle Scholar
  12. 12.
    Izato Y, Miyake A. Detailed kinetic model for ammonium dinitramide decomposition. Combust Flame. 2018;198:222–9.CrossRefGoogle Scholar
  13. 13.
    Zhang K, Thynell ST. Thermal decomposition mechanism of aqueous hydroxylammonium nitrate (HAN): molecular simulation and kinetic modeling. J Phys Chem A. 2018;122:8086–100.CrossRefGoogle Scholar
  14. 14.
    Kumbhakarna N, Thynell ST. Development of a reaction mechanism for liquid-phase decomposition of guanidinium 5-amino tetrazolate. Thermochim Acta. 2014;582:25–34.CrossRefGoogle Scholar
  15. 15.
    Ashcraft RW, Raman S, Green WH. Ab initio aqueous thermochemistry: application to the oxidation of hydroxylamine in nitric acid solution. J Phys Chem B. 2007;111:11968–83.CrossRefGoogle Scholar
  16. 16.
    Zhu Y-L, Shan M-X, Xiao Z-X, Wang J-S, Jiao Q-J. Kinetics of thermal decomposition of ε-hexanitrohexaazaisowurtzitane by TG–DSC–MS–FTIR. Korean J Chem Eng. 2015;32:1164–9.CrossRefGoogle Scholar
  17. 17.
    Rejitha KS, Ichikawa T, Mathew S. Investigations on the thermal behaviour of [Ni(NH3)6](NO3)2 and [Ni(en)3](NO3)2 using TG–MS and TR-XRD under inert condition. J Therm Anal Calorim. 2012;107:887–92.CrossRefGoogle Scholar
  18. 18.
    Kajiyama K, Izato Y, Miyake A. Thermal characteristics of ammonium nitrate, carbon, and copper(II) oxide mixtures. J Therm Anal Calorim. 2013;113:1475–80.CrossRefGoogle Scholar
  19. 19.
    Inoue C, Izato Y, Miyake A, Villermaux E. Direct self-sustained fragmentation cascade of reactive droplets. Phys Rev Lett. 2017;118:074502.CrossRefGoogle Scholar
  20. 20.
    Sankaranarayanan A, Mallick L, Kumbhakarna NR. A numerical and experimental study of the decomposition pathways of guanidium nitrate. J Therm Anal Calorim. 2018;131:427–41.CrossRefGoogle Scholar
  21. 21.
    Santhosh G, Soumyamol PB, Sreejith M, Reshmi S. Isoconversional approach for the non-isothermal decompositionkinetics of guanylurea dinitramide (GUDN). Thermochim Acta. 2016;632:46–51.CrossRefGoogle Scholar
  22. 22.
    Yoshino S, Miyake A. Thermal decomposition properties of 1,2,4-triazole-3-one and guanidine nitrate mixtures. J Therm Anal Calorim. 2010;102:513–6.CrossRefGoogle Scholar
  23. 23.
    Izato Y, Koshi M, Miyake A, Habu H. Kinetics analysis of thermal decomposition of ammonium dinitramide (ADN). J Therm Anal Calorim. 2017;127:255–64.CrossRefGoogle Scholar
  24. 24.
    Matsunaga H, Izato Y, Habu H, Miyake A. Thermal decomposition characteristics of mixtures of ammonium dinitramide and copper (II) oxide. J Therm Anal Calorim. 2015;121:319–26.CrossRefGoogle Scholar
  25. 25.
    Matsunaga H, Habu H, Miyake A. Analysis of evolved gases during the thermal decomposition of ammonium diniramide under pressure. Sci Technol Energ Mater. 2017;78:75–80.Google Scholar
  26. 26.
    Izato Y, Miyake A. Thermal decomposition mechanism of ammonium nitrate and potassium chloride mixtures. J Therm Anal Calorim. 2015;121:287–94.CrossRefGoogle Scholar
  27. 27.
    Shiota K, Izato Y, Matsunaga H, Habu H, Miyake A. Thermal properties of ammonium dinitramide, monomethylamine nitrate and urea based ionic liquid gel propellants. Trans Jpn Soc Aeronaut Space Sci. 2018;16:93–7.Google Scholar
  28. 28.
    Nakashima M, Itaura T, Matsunaga H, Higashi E, Takagi S, Katoh K. A fundamental study on the thermal decomposition and combustion behaviors of guanidine nitrate and basic copper nitrate mixture. J Therm Anal Calorim. 2018;131:95–100.CrossRefGoogle Scholar
  29. 29.
    Sivadas DL, Thomas D, Haseena MS, Jayalatha T, Krishnan GR, Jacob S, Rajeev R. Insight into the catalytic thermal decomposition mechanism of ammonium perchlorate. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08209-5.CrossRefGoogle Scholar
  30. 30.
    Xu Z, Jin-Hong Cheng, Wang Q, Cheng J, Hu X. The influence of dissociation reaction on ammonium nitrate thermal decomposition reaction. J Therm Anal Calorim. 2019;136:1415–24.CrossRefGoogle Scholar
  31. 31.
    Zhao C, Chi Y, Peng Q, Yang F, Zhou J, Wang X, Yu K, Fan G, Sun J. A study on the comprehension of differences in specific kinetic energy of TKX-50 and HMX from the perspective of gas products. Phys Chem Chem Phys. 2019;21:6600–5.CrossRefGoogle Scholar
  32. 32.
    Linstrom PJ, Mallard WG. NIST Chemistry WebBook. NIST Standard Reference Database Number 69. Eds. National Institute of Standards and Technology. http://webbook.nist.gov. Accessed 30 Sep 4 2018.
  33. 33.
    Friedel RA, Shultz JL, Sharkey AG. Mass spectrum of nitric acid. Anal Chem. 1967;45:1128.Google Scholar
  34. 34.
    Izato Y, Miyake A. The decomposition pathways of ammonium dinitramide on the basis of ab initio calculations. J Energ Mater. 2018;36:302–15.CrossRefGoogle Scholar
  35. 35.
    Izato Y, Koshi M, Miyake A. Identification of thermal decomposition products and reactions for liquid ammonium nitrate on the basis of ab initio calculation. Int J Chem Kinet. 2017;49:83–99.CrossRefGoogle Scholar
  36. 36.
    Izato Y, Koshi M, Miyake A. Decomposition pathways for aqueous hydroxylammonium nitrate solutions: a DFT study. Cent Eur J Energ Mater. 2017;14:888–916.CrossRefGoogle Scholar
  37. 37.
    Izato Y, Miyake A. Identification of radical reactions and products for aqueous hydroxylamine nitrate (HAN) solution based on ab initio calculations. Sci Technol Energ Mater. 2018;79:108–14.Google Scholar
  38. 38.
    Kurniadi W, Brower KR. A reinvestigation of the thermal decomposition of methylammonium nitrate. J Org Chem. 1994;59:5502–5.CrossRefGoogle Scholar
  39. 39.
    Breisacher P, Takimoto HH, Denault GC, Hicks WA. Simultaneous mass spectrometric differential thermal analyses of nitrate salts of monomethylhydrazine and methylamine. Combust Flame. 1970;14:397–404.CrossRefGoogle Scholar
  40. 40.
    Schaber P, Colson J, Higgins S, Thielen D, Anspach B, Brauer J. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochem Acta. 2004;424:131–42.CrossRefGoogle Scholar
  41. 41.
    Brack W, Heine B, Birkhold F, Kruse M, Schoch G, Tischer S, Deutschmann O. Kinetic modeling of urea decomposition based on systematic thermogravimetric analyses of urea and its most important by-products. Chem Eng Sci. 2014;106:1–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Graduate School of Environment and Information SciencesYokohama National UniversityYokohamaJapan
  2. 2.Institute of Advanced SciencesYokohama National UniversityYokohamaJapan
  3. 3.Application GroupNETZSCH Japan K.K.YokohamaJapan
  4. 4.MS Research and Development Department, MS Business UnitJEOL Ltd.AkishimaJapan
  5. 5.Division for Space Flight Systems, Institute of Space and Astronautical Science (ISAS)Japan Aerospace Exploration Agency (JAXA)SagamiharaJapan

Personalised recommendations