Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3571–3575 | Cite as

Thermal decomposition of carbonated lanthanum hydroxide

  • Elena Haibel
  • Ekkehard Füglein
  • Anne S. Schulze
  • Dirk WalterEmail author


The aim of this study was to research the influence of carbonate species on the thermal decomposition of lanthanum oxide compounds. To obtain adequate carbonate fractions, pure lanthanum hydroxide and oxide, respectively, were stored in a humid carbon dioxide atmosphere. In the process, lanthanum oxide converts within 24 h to lanthanum hydroxide because of its high affinity to water. Furthermore lanthanum hydroxide has the tendency to form carbonates, due to their basic character. By means of the results of TG-FTIR and TEM, a simplified model could be derived; the thermal decomposition of carbonated lanthanum hydroxide consists of two interfering reactions: The first reaction is the thermal decomposition of lanthanum hydroxide, and the second reaction is the thermal decomposition of lanthanum hydroxide carbonate.


Lanthanum hydroxide Lanthanum oxide Carbonate impurities TG-FTIR TEM 



  1. 1.
    Zhu J, Gui Z, Ding Y. A simple route to lanthanum hydroxide nanorods. Mater Lett. 2008;62:2373–6.CrossRefGoogle Scholar
  2. 2.
    Ozawa M, Onoe R, Kato H. Formation and decomposition of some rare earth (RE = La, Ce, Pr) hydroxides and oxides by homogeneous precipitation. J Alloys Compd. 2006;408–412:556–9.CrossRefGoogle Scholar
  3. 3.
    Vadivel Murugan A, Navale SC, Ravi V. Synthesis of nanocrystalline La2O3 powder at 100°C. Mater Lett. 2006;60:848–9.CrossRefGoogle Scholar
  4. 4.
    Fleming P, Farrel RA, Holmes JD, Morris MA. The rapid formation of La(OH)3 from La2O3 powders on exposure to water vapor. J Am Ceram Soc. 2010;93:1187–94.CrossRefGoogle Scholar
  5. 5.
    Mazloumi M, Zanganeh S, Kajbafvala A, Shayegh ME, Sadrnezhaad SK. Formation of lanthanum hydroxide nanostructures: effect of NaOH and KOH solvent. Int J Eng Trans B. 2008;21:169–76.Google Scholar
  6. 6.
    Wang X, Li Y. Synthesis and characterization of lanthanide hydroxide single crystal nanowires. Angew Chem Int Ed. 2002;41:4790–3.CrossRefGoogle Scholar
  7. 7.
    Kim SJ, Han WK, Kang SG, Han MS, Cheong YH. Formation of lanthanum hydroxide and oxide via precipitation. Solid State Phenom. 2008;135:23–6.CrossRefGoogle Scholar
  8. 8.
    Füglein E, Walter D. Thermal analysis of lanthanum hydroxide. J Therm Anal Calorim. 2012;110:199–202.CrossRefGoogle Scholar
  9. 9.
    Zhang X, He C, Wang L, Liu J, Deng M, Deng Q. Non-isothermal kinetic analysis of thermal dehydration of La2(CO3)3·3.4H2O in air. Trans Nonferrous Met Soc China. 2014;24:3378–85.CrossRefGoogle Scholar
  10. 10.
    Foger K, Hoang M, Turney TW. Formation and thermal decomposition of rare-earth carbonates. J Mater Sci. 1992;27:77–82.CrossRefGoogle Scholar
  11. 11.
    Imanaka N, Masui T, Kato Y. Preparation of the cubic-type La2O3 phase by thermal decomposition of LaI3. J Solid State Chem. 2005;178:395–8.CrossRefGoogle Scholar
  12. 12.
    Lin CH, Campbell D, Wang JX, Lunsford H. Oxidative dimerization of methane over lanthanum oxide. J Phys Chem. 1986;90:534–7.CrossRefGoogle Scholar
  13. 13.
    Campbell KD, Zhang H, Lunsford JH. Methane activation by the lanthanide oxides. J Phys Chem. 1988;92:750–3.CrossRefGoogle Scholar
  14. 14.
    Bernal S, Martin GA, Moral O, Perricho V. Oxidative dehydrogenation of ethane over lanthana: actual nature of the active phase. Catal Lett. 1990;6:231–8.CrossRefGoogle Scholar
  15. 15.
    Haensch A, Borowski D, Barsan N, Koziej D, Niederberger M, Weimer U. Faster response times of rare-earth oxycarbonate based CO2 sensors and another readout strategy for real-world applications. Proc Eng. 2011;25:1429–32.CrossRefGoogle Scholar
  16. 16.
    Koyabu K, Masui T, Tamura S, Imanaka N. Synthesis o a new phosphor based on rare earth oxycarbonate. J Alloys Compd. 2006;408–412:867–70.CrossRefGoogle Scholar
  17. 17.
    Wang S, Wang W, Qian Y. Preparation of La2O3 thin films by pulse ultrasonic spray pyrolysis method. Thin Solid Films. 2000;372:50–3.CrossRefGoogle Scholar
  18. 18.
    Bernal S, Botana FJ, García R, Ramírez F, Rodríguez-Izquierdo JM. Solid state chemistry of the preparation of lanthana-supported metal catalysts—study of the impregnation step. J Mater Sci. 1987;22:3793–800.CrossRefGoogle Scholar
  19. 19.
    Bernal S, Blanco G, Calvino JJ, Pérez Omil JA, Pintado JM. Some major aspects of the chemical behaviour of rare earth oxides: an overview. J Alloys Compd. 2006;408–412:496–502.CrossRefGoogle Scholar
  20. 20.
    Haibel E, Berendts S, Walter D. Thermogravimetric and X-ray diffraction investigation on carbonated lanthanum oxide and lanthanum hydroxide formed in humid CO2. J Therm Anal Calorim. 2018;134:261–7.CrossRefGoogle Scholar
  21. 21.
    Neumann A, Walter D. The thermal transformation from lanthanum hydroxide to lanthanum hydroxide oxide. Thermocim Acta. 2006;445:200–4.CrossRefGoogle Scholar
  22. 22.
    Alvero R, Odriozola JA, Trillo JM, Bernal S. Lanthanide oxides: preparation and aiging. J Chem Soc, Dalton Trans. 1984. Scholar
  23. 23.
    Walter D, Buxbaum G, Laqua W. The mechanism of the thermal transformation from goethite to hematite. J Therm Anal Calorim. 2001;63:733–48.CrossRefGoogle Scholar
  24. 24.
    Bernal S, Díaz JA, García R, Rodríguez-Izquierdo JM. Study of some aspects of the reactivity of La2O3 with CO2 and H2O. J Mat Sci. 1985;20:537–41.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Elena Haibel
    • 1
  • Ekkehard Füglein
    • 2
  • Anne S. Schulze
    • 1
  • Dirk Walter
    • 1
    • 3
    Email author
  1. 1.Gefahrstofflaboratorien Chemie und Physik am Institut für ArbeitsmedizinJustus-Liebig-UniversitätGiessenGermany
  2. 2.NETZSCH-Gerätebau GmbHSelbGermany
  3. 3.Institut für Anorganische und Analytische ChemieJustus-Liebig-UniversitätGiessenGermany

Personalised recommendations