Advertisement

Combustion properties of potential Amazon biomass waste for use as fuel

  • Jardson S. Reis
  • Rayanne O. Araujo
  • Victoria M. R. Lima
  • Leandro S. Queiroz
  • Carlos E. F. da Costa
  • Juliana J. R. Pardauil
  • Jamal S. Chaar
  • Geraldo N. Rocha Filho
  • Luiz K. C. de SouzaEmail author
Article
  • 4 Downloads

Abstract

Biomass has great potential for the production of fuels with high volatility and reactivity. In the Amazon region, biomass waste is mainly from fruits, which generate a large amount of stone and shell. Therefore, there is a need for technology to advance the use of renewable energy. This study aims to evaluate the combustion properties of biomass waste by using thermogravimetric analysis (TG-DTG). Five residues were used: acai stone, cocoa shell, coconut shell, cupuacu shell and Brazil nut shell. TG curves show the mass loss from room temperature to 140 °C, which is related to the removal of moisture. The second mass loss is ascribed to volatile matter in the temperature range of 140–400 °C, and the third mass loss from 400 to 600 °C is due to the decomposition of fixed carbon. By evaluating the thermal properties such as volatile matter, moisture, ignition temperature and mean reactivity index, it can be said that the coconut shell sample has combustion features that lead to its better use as fuel, while the acai stone biomass presents unsatisfactory combustion properties among the biomasses studied. The higher heating value is an important property which defines the energy content and efficient use of these fuels, and thus, for the biomass samples, the following order of higher heating value can be observed: Brazil nut shell, acai stone, cupuacu shell, cocoa shell and coconut shell.

Keywords

Amazon biomass waste Physicochemical properties Thermal analysis Renewable energy 

Notes

Acknowledgements

This work was financially supported by the Program for Young Doctors Teachers (PJD No. 6.04)—Ministry of Science, Technology, Innovation and Communications granted to this project and the National Council for Scientific and Technological Development (CNPq) Granted to this Project (425522/2018-0).

References

  1. 1.
    Wang Y, Delbecq F, Kwapinski W, Len C. Application of sulfonated carbon-based catalyst for the furfural production from d-xyloseandxylan in a microwave-assisted biphasic reaction. Mol Catal. 2017;438:167–72.CrossRefGoogle Scholar
  2. 2.
    Heidari A, Hajinezhad A, Aslani A. A sustainable power supply system, Iran’s opportunities via bioenergy. Environ Prog Sustain Energy. 2018;38:171–88.CrossRefGoogle Scholar
  3. 3.
    Abdelouahed L, Leveneur S, Vernieres-Hassimi L, Balland L, Taouk B. Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis. J Therm Anal Calorim. 2017;129:1201–13.CrossRefGoogle Scholar
  4. 4.
    Qin Z, Zhuang Q, Cai X, He Y, Huang Y, Jiang D, Lin E, Liu Y, Tang Y, Wang MQ. Biomass and biofuels in China: toward bioenergy resource potentials and the impact on the environment. Renew Sustain Energy Rev. 2018;82:2387–400.CrossRefGoogle Scholar
  5. 5.
    Tang ZE, Lim S, Pang YL, Ong HC, Lee KT. Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: state of the art and fundamental review. Renew Sustain Energy Rev. 2018;92:235–53.CrossRefGoogle Scholar
  6. 6.
    Raj T, Kapoor M, Gaur R, Christopher J, Lamba B, Tuli DK, Kumar R. Physical and chemical characterization of various indian agriculture residues for biofuels production. Energy Fuel. 2015;29:3111–8.CrossRefGoogle Scholar
  7. 7.
    Chen Q, Yang R, Zhao B, Li Y, Wang S, Wu H, Zhuo Y, Chen C. Investigation of heat of biomass pyrolysis and secondary reactions by simultaneous thermogravimetry and differential scanning calorimetry. Fuel. 2014;134:467–76.CrossRefGoogle Scholar
  8. 8.
    Basile L, Tugnoli A, Stramigioli C, Cozzane V. Thermal effects during biomass pyrolysis. Thermo Chim Acta. 2016;636:63–70.CrossRefGoogle Scholar
  9. 9.
    Wang X, Wang X, Qin G, Chen M, Wang J. Comparative study on pyrolysis characteristics and kinetics of lignocellulosic biomass and seaweed. J Therm Anal Calorim. 2018;132:1317–23.CrossRefGoogle Scholar
  10. 10.
    Akhtar J, Amin NS. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sustain Energy Rev. 2012;16:5101–9.CrossRefGoogle Scholar
  11. 11.
    Rath J, Wolfinger MG, Steiner G, Krammer G, Barontini F, Cozzani V. Heat of wood pyrolysis. Fuel. 2003;82:81–91.CrossRefGoogle Scholar
  12. 12.
    Stenseng M, Jensen A, Dam-Johansen K. Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry. J Anal Appl Pyrolysis. 2001;58–59:765–80.CrossRefGoogle Scholar
  13. 13.
    Gomez C, Velo E, Barontini F, Cozzani V. Influence of secondary reaction son the heat of pyrolysis of biomass. Ind EngChem Res. 2009;48:10222–33.CrossRefGoogle Scholar
  14. 14.
    Li Q, Zhao C, Chen X, Wu W, Li Y. Comparison of pulverized coal combustion in air and in O2/CO2 mixtures by thermo-gravimetric analysis. J Anal Appl Pyrolysis. 2009;85:521–8.CrossRefGoogle Scholar
  15. 15.
    Parikha J, Channiwala SA, Ghosal GK. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel. 2005;84:487–94.CrossRefGoogle Scholar
  16. 16.
    Mortari DA, Torquato LDM, Crespi MS, Crnkovic PM. Co-firing of blends of sugarcane bagasse and coal. J Therm Anal Calorim. 2018;132:1333–45.CrossRefGoogle Scholar
  17. 17.
    Brand MA, Barnasky RRS, Carvalho CA, Buss R, Waltrick DB, Jacinto RC. Thermogravimetric analysis for characterization of the pellets produced with different forest and agricultural residues. Cienc Rural. 2018;48:1–10.CrossRefGoogle Scholar
  18. 18.
    Zhao J, Wang Q, Yu L, Wu L. TG-DSC analysis of straw biomass pyrolysis and release characteristics of noncondensable gas in a fixed-bed-reactor. J Dry Technol. 2017;53:347–55.CrossRefGoogle Scholar
  19. 19.
    Queiroz AJP, Morais CRS, Lima LMR, Buriti JS, Sales JL, Filho FP. Analysis of deterioration and calorific value of urban solid residues. J Therm Anal Calorim. 2016;123:949–53.CrossRefGoogle Scholar
  20. 20.
    Müsellim E, Tahir MH, Ahmad MS, Ceylan S. Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis. Appl Therm Eng. 2018;137:54–61.CrossRefGoogle Scholar
  21. 21.
    Iordanidis A, Georgakopoulos A, Markova K, Filippidis A, Kassoli-Fournaraki A. Application of TG-DTA to the study of Amynteon lignites, northern Greece. Thermochim Acta. 2001;371:137–41.CrossRefGoogle Scholar
  22. 22.
    Haykırı-Acma H. Combustion characteristics of different biomass materials. Energy Convers Manag. 2003;44:155–62.CrossRefGoogle Scholar
  23. 23.
    Basu P. Biomass gasification and pyrolysis practical design and theory. Burlington: Elsevier Inc; 2010. p. 1–96.CrossRefGoogle Scholar
  24. 24.
    Chen D, Shuang E, Liu L. Analysis of pyrolysis characteristics and kinetics of sweet sorghum bagasse and cotton stalk. J Therm Anal Calorim. 2018;131:1899–909.CrossRefGoogle Scholar
  25. 25.
    Ghetti P, Ricca L, Angelini L. Thermal analysis of biomass and corresponding pyrolysis products. Fuel. 1996;75:565–73.CrossRefGoogle Scholar
  26. 26.
    Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 2002;81:1051–63.CrossRefGoogle Scholar
  27. 27.
    Ramírez V, Martí-Herrero J, Romero M, Rivadeneira D. Energy use of Jatropha oil extraction wastes: pellets from biochar and Jatropha shell blends. J Cleaner Prod. 2019;215:1095–102.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Jardson S. Reis
    • 1
  • Rayanne O. Araujo
    • 1
  • Victoria M. R. Lima
    • 1
  • Leandro S. Queiroz
    • 2
  • Carlos E. F. da Costa
    • 2
  • Juliana J. R. Pardauil
    • 1
  • Jamal S. Chaar
    • 1
  • Geraldo N. Rocha Filho
    • 2
  • Luiz K. C. de Souza
    • 1
    Email author
  1. 1.Department of ChemistryFederal University of AmazonasManausBrazil
  2. 2.Department of ChemistryFederal University of ParaBelémBrazil

Personalised recommendations