Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 137, Issue 6, pp 1841–1846 | Cite as

Comments on: Generalization of thermodynamics in of fractional-order derivatives and calculation of heat-transfer properties of noble gases, Journal of Thermal Analysis and Calorimetry (2018) 133:1189–1194

  • I. H. UmirzakovEmail author
Article
  • 37 Downloads

Abstract

It is shown that the equations for pressure, entropy and the isochoric heat capacity obtained by using generalization of the equilibrium thermodynamics in fractional derivatives in the paper mentioned above are approximate, the comparison of the equations with the experimental (tabulated) data for neon and argon made in the paper is incorrect, and the conclusions of the paper made on the basis of the comparison could be incorrect. The conditions for validity of the equations are established. It is also established that the question about a physical sense of the exponent of the derivative of a fractional order is still open.

Keywords

Thermodynamics Equation of state Entropy Heat capacity Fractional-order derivative 

Notes

References

  1. 1.
    Zemansky MW, Dittman RH. Heat and thermodynamics. New York: McGraw-Hill; 1981.Google Scholar
  2. 2.
    Landau LD, Lifshitz EM. Statistical physics. 3rd ed. Oxford: Butterworth-Heinemann; 2013.Google Scholar
  3. 3.
    Balescu R. Equilibrium and non-equilibrium statistical mechanics. New York: Wiley; 1975.Google Scholar
  4. 4.
    Hill TL. Statistical mechanics. New York: Mc-Graw Hill; 1956.Google Scholar
  5. 5.
    Bogolyubov NN. Problems of the dynamic theory in statistical physics. Moscow: Gostekhizdat; 1946 (in Russian).Google Scholar
  6. 6.
    Meilanov RP, Magomedov RA. Thermodynamics in fractal calculus. J Eng Phys Thermophys. 2014;87:1521–31.  https://doi.org/10.1007/s10891-014-1158-2.CrossRefGoogle Scholar
  7. 7.
    Sobolev SL. Locally nonequilibrium transfer processes. Usp. Fiz. Nauk. 1997;167(10):1095–106.CrossRefGoogle Scholar
  8. 8.
    Šesták J. Science of heat and thermophysical studies: a generalized approach to thermal analysis. Amsterdam: Elsevier; 2005.Google Scholar
  9. 9.
    Šimon P, Zmeškal O, Šesták J. Chapter 12 Fractals in solid-state processes. In: Šesták J, Šimon P, editors. Thermal analysis of micro, nano-and non-crystalline materials, vol. 9., Hot topics in thermal analysis and calorimetryDordrecht: Springer; 2012. p. 247–55.CrossRefGoogle Scholar
  10. 10.
    Mandelbrot B. Fractal geometry of nature. New York: WH Freeman and Company; 1977.Google Scholar
  11. 11.
    Magomedov RA, Meilanov RR, Meilanov RP, et al. Generalization of thermodynamics in of fractional-order derivatives and calculation of heat-transfer properties of noble gases. J Therm Anal Calorim. 2018;133:1189–94.  https://doi.org/10.1007/s10973-018-7024-2.CrossRefGoogle Scholar
  12. 12.
    Oldham K, Spanier BJ. The fractional calculus. New York: Academic Press; 1974.Google Scholar
  13. 13.
    Samko SG, Kilbas AA, Marichev OI. Integrals and derivatives of fractional order and some of their applications. Minsk: Nauka i Tekhnika; 1987 (in Russian).Google Scholar
  14. 14.
    Nakhushev AM. Fractional calculus and its application. Moscow: Fizmatlit; 2003 (in Russian).Google Scholar
  15. 15.
    Mason EA, Spurling TH. The virial equation of state. New York: Pergamon; 1969.Google Scholar
  16. 16.
    Sevast’yanov RM, Chernyavskaya RA. Virial coefficients of neon, argon, and krypton at temperatures up to 3000 K. J Eng Phys. 1987;52:703–5.CrossRefGoogle Scholar
  17. 17.
    Zubarev VN, Kozlov AD, Kuznetsov VM, et al. Thermophysical properties of technically important gases at high temperatures and pressures: reference book. Moscow: Energoatomizdat; 1989 (in Russian).Google Scholar
  18. 18.
    Estrada-Torres R, Iglesias-Silva GA, Ramos-Estrada M, Hall KR. Boyle temperatures for pure substances. Fluid Phase Equilib. 2007;258:148–54.  https://doi.org/10.1016/j.fluid.2007.06.004.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Institute of ThermophysicsNovosibirskRussia

Personalised recommendations