Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 139, Issue 2, pp 823–829 | Cite as

The effect of e/a ratio on thermodynamic parameters and surface morphology of Cu–Al–Fe–X shape memory alloys

  • Canan Aksu CanbayEmail author
  • Sivar Aziz
  • İskender Özkul
  • Aysegül Dere
Article
  • 61 Downloads

Abstract

In this study, four Cu–Al–Fe–X shape memory alloys were produced by the arc melting technique, and the martensitic transformation temperatures, thermodynamic parameters, and the activation energy values were obtained. The activation energy values of the alloys were calculated as 666.36, 401.6, 82.94, and 226.22 kJ mol−1 for S1, S2, S3, and S4, respectively. High-temperature phase transitions and eutectoid point of the samples were examined by the differential thermal analysis method. The martensitic diffraction planes of the samples were found as 122, 0022, 1210, and 2012, and the crystallite size of the samples was calculated as 16.21, 20.20, 14.43, and 17.46, respectively. Lastly, optical micrograph observations revealed the morphology of the alloys and the variations in the grains and martensite structures. The e/a ratio of the alloys varied 1.47–1.51, and these values are in agreement with the values in literature to give shape memory effect.

Keywords

e/a ratio Thermodynamic parameters Phase transition Microstructure 

Notes

Acknowledgements

This work was financially supported by FÜBAP, Project No: FF.18.21.

References

  1. 1.
    Altin E, Oz E, Erdem M, Demirel S, Aydogdu Y, Altin S. Thermoelectric and mechanical properties of Mg–Al–Sb alloys. J Mater Sci: Mater Electron. 2015;26(2):1023–32.Google Scholar
  2. 2.
    Lojen G, Anžel I, Kneissl A, Križman A, Unterweger E, Kosec B, et al. Microstructure of rapidly solidified Cu–Al–Ni shape memory alloy ribbons. J Mater Process Technol. 2005;162:220–9.CrossRefGoogle Scholar
  3. 3.
    Izadinia M, Dehghani K. Structure and properties of nanostructured Cu–13.2 Al–5.1 Ni shape memory alloy produced by melt spinning. Trans Nonferr Metals Soc China. 2011;21(9):2037–43.CrossRefGoogle Scholar
  4. 4.
    Recarte V, Perez-Landazabal J, Rodrıguez P, Bocanegra E, No M, San Juan J. Thermodynamics of thermally induced martensitic transformations in Cu–Al–Ni shape memory alloys. Acta Mater. 2004;52(13):3941–8.CrossRefGoogle Scholar
  5. 5.
    Sobrero C, La Roca P, Roatta A, Bolmaro R, Malarría J. Shape memory properties of highly textured Cu–Al–Ni–(Ti) alloys. Mater Sci Eng, A. 2012;536:207–15.CrossRefGoogle Scholar
  6. 6.
    Kato H, Yasuda Y, Sasaki K. Thermodynamic assessment of the stabilization effect in deformed shape memory alloy martensite. Acta Mater. 2011;59(10):3955–64.CrossRefGoogle Scholar
  7. 7.
    Canbay CA, Karaduman O, Özkul İ. Investigation of varied quenching media effects on the thermodynamical and structural features of a thermally aged CuAlFeMn HTSMA. Physica B. 2019;557:117–25.CrossRefGoogle Scholar
  8. 8.
    Mallik U, Sampath V. Effect of alloying on microstructure and shape memory characteristics of Cu–Al–Mn shape memory alloys. Mater Sci Eng, A. 2008;481:680–3.CrossRefGoogle Scholar
  9. 9.
    Canbay CA, Aydoğdu A. Thermal analysis of Cu–14.82 wt% Al–0.4 wt% Be shape memory alloy. J Therm Anal Calorim. 2013;113(2):731–7.CrossRefGoogle Scholar
  10. 10.
    Mallik U, Sampath V. Influence of aluminum and manganese concentration on the shape memory characteristics of Cu–Al–Mn shape memory alloys. J Alloy Compd. 2008;459(1–2):142–7.CrossRefGoogle Scholar
  11. 11.
    Sharma M, Vajpai S, Dube R. Synthesis and properties of Cu–Al–Ni shape memory alloy strips prepared via hot densification rolling of powder preforms. Powder Metall. 2011;54(5):620–7.CrossRefGoogle Scholar
  12. 12.
    Massalski TB, Mizutani U. Electronic structure of Hume-Rothery phases. Prog Mater Sci. 1978;22(3–4):151–262.CrossRefGoogle Scholar
  13. 13.
    Massalski T, editor. Hume-Rothery rules re-visited. In: Science of alloys for the 21st century: a Hume-Rothery symposium celebration. Warrendale: TMS (The Minerals, Metals & Materials SOciety); 2000.Google Scholar
  14. 14.
    Hume-Rothery W. Researches on the nature, properties, and conditions of formation of intermetallic compounds, with special reference to certain compounds of tin. University of London; 1926.Google Scholar
  15. 15.
    Mañosa L, Planes A, Ortín J, Martínez B. Entropy change of martensitic transformations in Cu-based shape-memory alloys. Phys Rev B. 1993;48(6):3611.CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Evans J, Yang S. The prediction of solid solubility of alloys: developments and applications of Hume-Rothery’s rules. J Cryst Phys Chem. 2010;1(2):103–19.Google Scholar
  17. 17.
    Obradó E, Mañosa L, Planes A. Stability of the bcc phase of Cu–Al–Mn shape-memory alloys. Phys Rev B. 1997;56(1):20.CrossRefGoogle Scholar
  18. 18.
    Pelegrina J, Ahlers M. The martensitic phases and their stability in Cu Zn and Cu Zn Al alloys—I. The transformation between the high temperature β phase and the 18R martensite. Acta Metall Mater. 1992;40(12):3205–11.CrossRefGoogle Scholar
  19. 19.
    Portier RA, Ochin P, Pasko A, Monastyrsky GE, Gilchuk AV, Kolomytsev VI, et al. Spark plasma sintering of Cu–Al–Ni shape memory alloy. J Alloy Compd. 2013;577:S472–7.CrossRefGoogle Scholar
  20. 20.
    Prado M, Decorte P, Lovey F. Martensitic transformation in Cu–Mn–Al alloys. Scr Metall Mater. 1995;33(6):877–83.CrossRefGoogle Scholar
  21. 21.
    Suresh N, Ramamurty U. Aging response and its effect on the functional properties of Cu–Al–Ni shape memory alloys. J Alloy Compd. 2008;449(1–2):113–8.CrossRefGoogle Scholar
  22. 22.
    Kannarpady GK, Bhattacharyya A, Pulnev S, Vahhi I. The effect of isothermal mechanical cycling on Cu–13.3 Al–4.0 Ni (wt%) shape memory alloy single crystal wires. J Alloy Compd. 2006;425(1-2):112–22.CrossRefGoogle Scholar
  23. 23.
    Rodríguez-Aseguinolaza J, Ruiz-Larrea I, Nó ML, López-Echarri A, San Juan JM. Temperature memory effect in Cu–Al–Ni shape memory alloys studied by adiabatic calorimetry. Acta Mater. 2008;56(15):3711–22.CrossRefGoogle Scholar
  24. 24.
    Llopis J, Piqueras J, Bru L. On the equilibrium transition temperature of thermoelastic martensitic transformations. J Mater Sci. 1978;13(6):1364–6.CrossRefGoogle Scholar
  25. 25.
    Ahlers M. Phase stability of martensitic structures. Le Journal de Physique IV. 1995;5(C8):C8-71-C8-80.Google Scholar
  26. 26.
    Ortin J, Planes A. Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations. Acta Metall. 1988;36(8):1873–89.CrossRefGoogle Scholar
  27. 27.
    Obradó E, Mañosa L, Planes A. Influence of composition and thermal treatments on the martensitic transition of Cu–Al–Mn alloys. Le Journal de Physique IV. 1997;7(C5):C5-233-C5-8.Google Scholar
  28. 28.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.CrossRefGoogle Scholar
  29. 29.
    Kokorin V, Kozlova L, Perekos A. On nanoparticles of the ferromagnetic Cu2MnAl phase in Cu–Al–Mn shape memory alloys. Mater Sci Eng, A. 2008;481:542–5.CrossRefGoogle Scholar
  30. 30.
    Husain S, Clapp P. Synthesis and properties of Cu–Al–Ni shape memory alloy strips prepared via hot densification rolling of powder performs. J Mater Sci. 1987;22:2351–6.CrossRefGoogle Scholar
  31. 31.
    Mallik U, Sampath V. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. J Alloy Compd. 2009;469(1–2):156–63.CrossRefGoogle Scholar
  32. 32.
    Matsushita K, Okamoto T, Okamoto T. Effects of manganese and ageing on martensitic transformation of Cu–Al–Mn alloys. J Mater Sci. 1985;20(2):689–99.CrossRefGoogle Scholar
  33. 33.
    Sutou Y, Kainuma R, Ishida K. Effect of alloying elements on the shape memory properties of ductile Cu–Al–Mn alloys. Mater Sci Eng, A. 1999;273:375–9.CrossRefGoogle Scholar
  34. 34.
    Degeratu S, Rotaru P, Rizescu S, Bîzdoacă N. Thermal study of a shape memory alloy (SMA) spring actuator designed to insure the motion of a barrier structure. J Therm Anal Calorim. 2013;111(2):1255–62.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceFirat UniversityElazigTurkey
  2. 2.Mechanical Engineering Department, Engineering FacultyMersin UniversityMersinTurkey

Personalised recommendations