Advertisement

The features of iodine loss at high temperatures

The case study of crystalline thiazoloquinolinium polyiodides
  • Irina D. YushinaEmail author
  • D. G. Pikhulya
  • Ekaterina V. Bartashevich
Article
  • 3 Downloads

Abstract

A series of crystalline thiazoloquinolinium iodides has been studied using a combination of thermal analysis, mass and Raman spectroscopy techniques. The influence of composition and polyiodide anion stoichiometry on the features of iodine loss has been revealed. It has been shown that the existence of a bound diiodine molecule in a polyiodide chain leads to significant decrease in melting point and decomposition temperatures in comparison with corresponding mono- and triiodide salts. The loss of the diiodine molecule from the complex polyiodide proceeds independently, without decomposition of the organic cation, while the release of diiodine from the triiodide anion goes simultaneously with thermal decomposition of the cation. In addition, the decomposition processes on the surface of the thiazoloquinolinium polyiodide crystal have been investigated during sample storage. Iodine loss and formation of more stable triiodide have been proved using Raman spectroscopy data.

Keywords

Thermal analysis Evolved gas analysis Thermal decomposition Thiazoloquinolinium polyiodides Halogen bonding 

Notes

Acknowledgements

This work was supported by grant of Ministry of Education and Science of the Russian Federation (Award No 4.1157.2017/4.6) and by the Government of the Russian Federation, Act 211, contract No. 02.A03.21.0011.

Supplementary material

10973_2019_8442_MOESM1_ESM.doc (178 kb)
Supplementary material 1 (DOC 178 kb)

References

  1. 1.
    Svensson PH, Kloo L. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chem Rev. 2003;103:1649–84.CrossRefGoogle Scholar
  2. 2.
    Yamanaka N, Kawano R, Kubo W. Dye-sensitized TiO2 solar cells using imidazolium-type ionic liquid crystal systems as effective electrolytes. J Phys Chem B. 2007;111:4763–9.CrossRefGoogle Scholar
  3. 3.
    Fei Z, Kuang D, Zhao D, Klein C, Ang WH, Zakeeruddin SM, Grätzel M, Dyson PJ. A supercooled imidazolium iodide ionic liquid as a low-viscosity electrolyte for dye-sensitized solar cells. Inorg Chem. 2006;45:10407–9.CrossRefGoogle Scholar
  4. 4.
    Waentig L, Jakubowski N, Hayen H, Roos PH. Iodination of proteins, proteomes and antibodies with potassium triodide for LA-ICP-MS based proteomic analyses. J Anal At Spectrom. 2011;26:1610–8.CrossRefGoogle Scholar
  5. 5.
    Moulay S. Molecular iodine/polymer complexes. J Polym Eng. 2013;33:389–443.CrossRefGoogle Scholar
  6. 6.
    Kaiho T. Iodine chemistry and applications. New York: Wiley; 2014.CrossRefGoogle Scholar
  7. 7.
    Miyao K, Funabiki A, Takahashi K, Mochida T, Uruichi M. Reversible iodine absorption of nonporous coordination polymer Cu(TCNQ). New J Chem. 2014;38:739–43.CrossRefGoogle Scholar
  8. 8.
    Mukherjee A, Tothadi S, Desiraju GR. Halogen bonds in crystal engineering: like hydrogen bonds yet different. Acc Chem Res. 2014;47:2514–24.CrossRefGoogle Scholar
  9. 9.
    Reiss GJ, Engel JS. Crystal engineering of a new layered polyiodide using 1,9-diammoniononane as a flexible template cation. Z Naturforsch. 2004;59b:1114–7.CrossRefGoogle Scholar
  10. 10.
    Subashini A, Rajarajan K, Sagadevan S, et al. Preparation and characterization of a bis thiourea sodium iodide (BTSI). J Therm Anal Calorim. 2018;131:2179.CrossRefGoogle Scholar
  11. 11.
    Tebbe KF, Farida T, Stegemann H, Fullbier H. Untersuchungen an Polyhalogeniden. XXIII. Kristallstrukturen der N‐Alkylurotropiniumtriiodide UrRI3 mit R = Methyl, Ethyl, n‐Propyl und n‐Butyl. Z Anorg Allg Chem. 1996;622:525.CrossRefGoogle Scholar
  12. 12.
    Tebbe KF, Loukili R. Über das Dimethyl(n‐propyl)phenylammoniumtriiodid n‐PrMe2PhNI3 und die Reihe der Dimethyl(isopropyl)phenylammoniumpolyiodide i‐PrMe2PhNIx mit x = 3, 5, 7, 8, 9. Z Anorg Allg Chem. 1998;624:1175.CrossRefGoogle Scholar
  13. 13.
    Tebbe KF, Nagel K. Untersuchungen an Polyhalogeniden. XXVI [1]. Über NPropylurotropiniumpolyiodide UrPrIx mit x = 5 und 7: Strukturelle Charakterisierung eines Pentaiodids und eines Heptaiodids. Z Anorg Allg Chem. 1996;622:1323.CrossRefGoogle Scholar
  14. 14.
    Bartashevich EV, Yushina ID, Vershinina EA, Slepukhin PA, Kim DG. Complex structure tri- and polyiodides of iodocyclization products of 2-allylthioquinoline. J Struct Chem. 2014;55:112–9.CrossRefGoogle Scholar
  15. 15.
    Iwata R, Kitagawa K, Zhang NY, Wu B, Inagaki C. Non-steroidal anti-inflammatory drugs protect amyloid beta protein-induced increase in the intracellular Cl-concentration in cultured rat hippocampal neurons. Neurosci Lett. 2004;367:156–9.CrossRefGoogle Scholar
  16. 16.
    Metrangolo P, Resnati G. Halogen donding II: impact on materials chemistry and life sciences. Berlin: Springer; 2015.CrossRefGoogle Scholar
  17. 17.
    Desiraju GR, Ho PS, Kloo L. Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl Chem. 2013;85:1711–3.CrossRefGoogle Scholar
  18. 18.
    Politzer P, Murray JS, Clark T. Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys. 2010;12:127748–57.CrossRefGoogle Scholar
  19. 19.
    Gordon ER, Walsh RB, Pennington WT, Hanks TW. Syntheses and structures of two acridine orange polyiodide salts. J Chem Crystallogr. 2003;33:385–90.CrossRefGoogle Scholar
  20. 20.
    Bartashevich EV, Nasibullina SE, Bol’shakov OI, Tsirelson VG. Exploring heterocyclic cations ability to form the iodide–iodine halogen bond: case study of chalco-genazolo(ino)quinolinium crystals. Struct Chem. 2016;27:305–13.CrossRefGoogle Scholar
  21. 21.
    Das GC, Das B, Sarma NS, Medhi OK. Synthesis, structure and properties of cetyltrimethylammonium polyiodides. Polyhedron. 2012;37:14–20.CrossRefGoogle Scholar
  22. 22.
    Wang Y, Xue Y, Wang X, Cui Z, Wang L. The stable polyiodides: experimental and theoretical studies of formation mechanism. J Mol Struct. 2014;1074:231–9.CrossRefGoogle Scholar
  23. 23.
    Yushina ID, Rudakov BV, Krivtsov IV, Bartashevich EV. Thermal decomposition of tetraalkylammonium iodides. J Therm Anal Calorim. 2014;118:425–9.CrossRefGoogle Scholar
  24. 24.
    Aliev ZS, Musayeva SS, Imamaliyeva SZ, et al. Thermodynamic study of antimony chalcoiodides by EMF method with an ionic liquid. J Therm Anal Calorim. 2018;133:1115.CrossRefGoogle Scholar
  25. 25.
    Sawicka M, Storoniak P, Skurski P, Błazejowski J, Rak J. TG-FTIR, DSC and quantum chemical studies of the thermal decomposition of quaternary methylammonium halides. Chem Phys. 2006;324:425–37.CrossRefGoogle Scholar
  26. 26.
    Keshavarz MH, Mousaviazar A, Hayaty M. A novel approach for assessment of thermal stability of organic azides through prediction of their temperature of maximum mass loss. J Therm Anal Calorim. 2017;129:1659.CrossRefGoogle Scholar
  27. 27.
    Deplano P, Ferraro JR, Mercuri ML, Trogu EF. Structural and Raman spectroscopic studies as complementary tools in elucidating the nature of the bonding in polyiodides and in donor-I2 adducts. Coord Chem Rev. 1999;188:71–95.CrossRefGoogle Scholar
  28. 28.
    Kim DG. Synthesis and halocyclization of 2-alkenylthioquinolines. Chem Heterocycl Compd. 2008;11:1664–8.Google Scholar
  29. 29.
    Bartashevich EV, Yushina ID, Stash AI, Tsirelson VG. Halogen bonding and other iodine interactions in crystals of dihydrothiazolo(oxazino)quinolinium oligoiodides from the electron-density viewpoint. Cryst Growth Des. 2014;14:5674–84.CrossRefGoogle Scholar
  30. 30.
    Grafe-Kavoosian A, Nafepour S, Nagel K, Tebbe KF. Studies on polyhalides, XXXVI on the octaiodide ion I8 2−: preparation and crystal structure of [(Crypt-2.2.2)H2]I8, of [Ni(phen)3]I8·2CHCl3 and of the (N-alkylurotropinium)octaiodides (UrR)2I8 with R = methyl and ethyl. Z Naturforsch B Chem Sci. 1998;53:641.CrossRefGoogle Scholar
  31. 31.
    Bertolotti F, Shishkina AV, Forni A, Gervasio G, Stash AI, Tsirelson VG. Intermolecular bonding features in solid iodine. Cryst Growth Des. 2014;14:3587–95.CrossRefGoogle Scholar
  32. 32.
    Topol LE. Thermodynamic studies in the tetramethylammonium iodide-polyiodide and tetraethylammonium iodide-polyiodide system. Inorg Chem. 1971;10:736.CrossRefGoogle Scholar
  33. 33.
    Do K, Klein TI, Pommerening CA, Sunderlin LS. A new flowing afterglow-guided ion beam tandem mass spectrometer. Applications to the thermochemistry of polyiodide ions. J Am Soc Mass Spectrom. 1997;8:688–96.CrossRefGoogle Scholar
  34. 34.
    Landrum GA, Goldberg N, Hoffmann R. Bonding in the trihalides (X3 ), mixed trihalides (X2Y) and hydrogen bihalides (X2H). The connection between hypervalent, electron-rich three-center, donor-acceptor and strong hydrogen bonding. Dalton Trans. 1997;19:3605–13.CrossRefGoogle Scholar
  35. 35.
    Chase MW. NIST-JANAF themochemical tables, fourth edition. J Phys Chem Ref Data Monogr. 1998;9(1):1951.Google Scholar
  36. 36.
    Yushina ID, Kolesov BA, Bartashevich EV. Raman spectroscopy study of new thia- and oxazinoquinolinium triodides. New J Chem. 2015;39:6163–70.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.SEC NanotechnologySouth Ural State UniversityChelyabinskRussia
  2. 2.Nonlinear Optics Laboratory, Institute of ElectrophysicsUral Branch of the Russian Academy of SciencesEkaterinburgRussia
  3. 3.Department of OptoinformationSouth Ural State UniversityChelyabinskRussia

Personalised recommendations