Pyrolysis of Ageratum conyzoides (goat weed)

Parametric influence on the product yield and product characterization
  • Neelanjan Bhattacharjee
  • Asit Baran BiswasEmail author


A semi-batch reactor was used to carry out the pyrolysis of Ageratum conyzoides. The outcome of pyrolysis parameters vis temperature (350–600 °C); heating rate (25–100 °C min−1) and sweeping gas (N2) flow rate (0.1–0.5 L min−1) were observed on the product yield. The fixed particle size of 0.425 mm was maintained throughout the pyrolysis process. The maximum pyrolytic-oil yield of 37.55 mass% was achieved at a temperature of 525 °C under a constant heating rate and sweeping gas flow rate of 75 °C min−1 and 0.2 L min−1. Biomass, biochar, pyrolytic-oil and pyrolysis–gas were characterized through CHNS and O, FT-IR, TG and DTG, SEM–EDX, BET, XRD, 1H-NMR and GC–MS analysers. The A. conyzoides pyrolytic-oil and biochar has an empirical formula of CH1.32O0.82 and CH0.82O0.44 and a high heating value of 17.79 MJ kg−1 and 22.93 MJ kg−1. Presence of lower and higher hydrocarbon compounds in pyrolytic-oil makes it a suitable feedstock for the production of various chemicals. High alkalinity and carbonaceous nature of biochar make it suitable for the modification of soil or can be utilized as a solid fuel. The pyrolysis–gas has a gross calorific value of 5.32 MJ m−3 and can be utilized as an alternative gaseous energy source.


Ageratum conyzoides (goat weed) biomass Pyrolytic-oil Pyrolysis–gas and biochar 



  1. 1.
    Zhang L, Xu C, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag. 2010;51:969–82.CrossRefGoogle Scholar
  2. 2.
    Bridgwater AV, Grassi G. Biomass pyrolysis liquids upgrading and utilization. Berlin: Springer; 1991.CrossRefGoogle Scholar
  3. 3.
    Rothman H. Synthetic fuels. Endeavour. 1986;10:1–216.CrossRefGoogle Scholar
  4. 4.
    Raveendran K, Anuradda G, Kilhar KC. Pyrolysis characteristics of biomass and biomass components. Fuel. 1996;75:987–98.CrossRefGoogle Scholar
  5. 5.
    Biswas B, Pandey N, Bisht Y, Singh R, Kumar J, Bhaskar T. Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour Technol. 2017;237:57–63.CrossRefGoogle Scholar
  6. 6.
    Liao R, Gao B, Fang J. Invasive plants as feedstock for biochar and bioenergy production. Bioresour Technol. 2013;140:439–42.CrossRefGoogle Scholar
  7. 7.
    Kohli RK, Batish DR, Singh HP, Dogra KS. Status, invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorus L., Ageratum conyzoides L., Lantana camara L.) in India. Biol Invasions. 2006;8:1501–10.CrossRefGoogle Scholar
  8. 8.
    Mooney HA, Cleland EE. The evolutionary impact of invasive species. Proc Natl Acad Sci. 2001;98:5446–51.CrossRefGoogle Scholar
  9. 9.
    Masters RA, Sheley RL. Principles and practices for managing rangeland invasive plants. J Range Manag. 2001;54:502–17.CrossRefGoogle Scholar
  10. 10.
    Kolb A, Alpert P, Enters D, Holzapfel C. Patterns of invasion within a grassland community. J Ecol. 2002;90:871–81.CrossRefGoogle Scholar
  11. 11.
    Kohli RK, Jose S, Singh HP, Batish DR. Invasive plants and forest ecosystems. In: Kohli RK, Jose S, Singh HP, Batish DR, editors. Management. 1st ed. Boca Raton: CRC Press; 2008.Google Scholar
  12. 12.
    Holm LG, Plucknett DL, Pancho JV, Herberger JP. The world’ s worst weeds. Honolulu: University Press Hawaii; 1977.Google Scholar
  13. 13.
    Okunade AL. Ageratum conyzoides L. (Asteraceae). Fitoterapia. 2002;73:1–16.CrossRefGoogle Scholar
  14. 14.
    Stapf O. The flora and fauna of British India. Nature. 1898;58:250–1.CrossRefGoogle Scholar
  15. 15.
    Dogra KS, Kohli RK, Sood SK, Dobhal PK. Impact of Ageratum conyzoides L. on the diversity and composition of vegetation in the Shivalik hills of Himachal Pradesh (Northwestern Himalaya), India. Int J Biodivers Conserv. 2009;1:135–45.Google Scholar
  16. 16.
    Rawat GS, Goyal SP, Johnsingh AJT. Ecological observations on the grasslands of Corbett Tiger Reserve. India. Indian For. 1997;123:958–63.Google Scholar
  17. 17.
    Sit AK, Bhattacharya M, Sarkar B, Arunachalam V. Weed floristic composition in palm gardens in plains of eastern Himalayan region of West Bengal. Curr Sci. 2007;92:1434–9.Google Scholar
  18. 18.
    Rasingam L, Parthasarathy N. Diversity of understory plants in undisturbed and disturbed tropical lowland forests of Little Andaman Island, India. Biodivers Conserv. 2009;18:1045–65.CrossRefGoogle Scholar
  19. 19.
    Negi PS, Hajra PK. Alien flora of Doon Valley, Northwest Himalaya. Curr Sci. 2007;92:968–78.Google Scholar
  20. 20.
    Harun MY, Dayang Radiah AB, Zainal Abidin Z, Yunus R. Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes). Bioresour Technol. 2011;102:5193–9.CrossRefGoogle Scholar
  21. 21.
    Akhtar J, Saidina Amin N. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sustain Energy Rev. 2012;16:5101–9.CrossRefGoogle Scholar
  22. 22.
    Varma AK, Mondal P. Pyrolysis of pine needles: effects of process parameters on products yield and analysis of products. J Therm Anal Calorim. 2017;131:2057–72.CrossRefGoogle Scholar
  23. 23.
    Rout T, Pradhan D, Singh RK, Kumari N. Exhaustive study of products obtained from coconut shell pyrolysis. J Environ Chem Eng. 2016;4:3696–705.CrossRefGoogle Scholar
  24. 24.
    Singh VK, Soni AB, Kumar S, Singh RK. Pyrolysis of sal seed to liquid product. Bioresour Technol. 2014;151:432–5.CrossRefGoogle Scholar
  25. 25.
    Pradhan D, Singh RK, Bendu H, Mund R. Pyrolysis of Mahua seed (Madhuca indica)—production of biofuel and its characterization. Energy Convers Manag. 2016;108:529–38.CrossRefGoogle Scholar
  26. 26.
    Varma AK, Mondal P. Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products. Ind Crops Prod. 2017;95:704–17.CrossRefGoogle Scholar
  27. 27.
    Şensöz S, Demiral I, Gerçel HF. Olive bagasse (Olea europea L.) pyrolysis. Bioresour Technol. 2006;97:429–36.CrossRefGoogle Scholar
  28. 28.
    Moralı U, Yavuzel N, Şensöz S. Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: characterization of bio-oil and bio-char. Bioresour Technol. 2016;221:682–5.CrossRefGoogle Scholar
  29. 29.
    Nayan NK, Kumar S, Singh RK. Production of the liquid fuel by thermal pyrolysis of neem seed. Fuel. 2013;103:437–43.CrossRefGoogle Scholar
  30. 30.
    Bhattacharjee N, Biswas AB. Pyrolysis of Alternanthera philoxeroides (alligator weed): effect of pyrolysis parameter on product yield and characterization of liquid product and bio char. J Energy Inst. 2018;91:605–18.CrossRefGoogle Scholar
  31. 31.
    Conti L, Scano G, Boufala J. Bio-oils from arid land plants: flash pyrolysis of Euphorbia characias bagasse. Biomass Bioenergy. 1994;7:291–6.CrossRefGoogle Scholar
  32. 32.
    Liu WJ, Zeng FX, Jiang H, Yu HQ. Total recovery of nitrogen and phosphorus from three wetland plants by fast pyrolysis technology. Bioresour Technol. 2011;102:3471–9.CrossRefGoogle Scholar
  33. 33.
    Kim SS, Agblevor FA. Thermogravimetric analysis and fast pyrolysis of milkweed. Bioresour Technol. 2014;169:367–73.CrossRefGoogle Scholar
  34. 34.
    Asadullah M, Rahman MA, Ali MM, Rahman MS, Motin MA, Sultan MB, et al. Production of bio-oil from fixed bed pyrolysis of bagasse. Fuel. 2007;86:2514–20.CrossRefGoogle Scholar
  35. 35.
    Roddy DJ, Manson-Whitton C. Biomass gasification and pyrolysis. Compr Renew Energy. 2012;5:133–53.CrossRefGoogle Scholar
  36. 36.
    Sudiro M, Bertucco A. Synthetic fuels by a limited CO2 emission process which uses both fossil and solar energy. Energy Fuels. 2007;21:3668–75.CrossRefGoogle Scholar
  37. 37.
    Abdullah H, Mediaswanti KA, Wu H. Biochar as a fuel: 2. Significant differences in fuel quality and ash properties of biochars from various biomass components of mallee trees. Energy Fuels. 2010;24:1972–9.CrossRefGoogle Scholar
  38. 38.
    Sun S, Tian H, Zhao Y, Sun R, Zhou H. Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor. Bioresour Technol. 2010;101:3678–84.CrossRefGoogle Scholar
  39. 39.
    Lopez-Velazquez MA, Santes V, Balmaseda J, Torres-Garcia E. Pyrolysis of orange waste: a thermo-kinetic study. J Anal Appl Pyrol. 2013;99:170–7.CrossRefGoogle Scholar
  40. 40.
    Li K, Zhang L, Zhu L, Zhu X. Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry. Bioresour Technol. 2017;234:48–52.CrossRefGoogle Scholar
  41. 41.
    Balat M. Mechanisms of thermochemical biomass conversion processes. Part 1: reactions of pyrolysis. Energy Sources A Recover Util Environ Eff. 2008;30:620–35.CrossRefGoogle Scholar
  42. 42.
    Newalkar G, Iisa K, D’Amico AD, Sievers C, Agrawal P. Effect of temperature, pressure, and residence time on pyrolysis of pine in an entrained flow reactor. Energy Fuels. 2014;28:5144–57.CrossRefGoogle Scholar
  43. 43.
    Zhou L, Yang H, Wu H, Wang M, Cheng D. Catalytic pyrolysis of rice husk by mixing with zinc oxide: characterization of bio-oil and its rheological behavior. Fuel Process Technol. 2013;106:385–91.CrossRefGoogle Scholar
  44. 44.
    Xu B, Li A. Effect of high-pressure on pine sawdust pyrolysis: products distribution and characteristics. AIP Conf Proc. 2017;1864:1–7.Google Scholar
  45. 45.
    Yorgun S, Şensöz S, Koçkar ÖM. Characterization of the pyrolysis oil produced in the slow pyrolysis of sunflower-extracted bagasse. Biomass Bioenergy. 2001;20:141–8.CrossRefGoogle Scholar
  46. 46.
    Uzun BB, Pütün AE, Pütün E. Fast pyrolysis of soybean cake: product yields and compositions. Bioresour Technol. 2006;97:569–76.CrossRefGoogle Scholar
  47. 47.
    Sensoz S, Angın D. Pyrolysis of safflower (Charthamus tinctorius L.) seed press cake: part 1. The effects of pyrolysis parameters on the product yields. Bioresour Technol. 2008;99:5492–7.CrossRefGoogle Scholar
  48. 48.
    Aboulkas A, El Harfi K. Effects of acid treatments on Moroccan Tarfaya oil shale and pyrolysis of oil shale and their kerogen. J Fuel Chem Technol. 2010;37:659–67.CrossRefGoogle Scholar
  49. 49.
    AçIkalIn K. Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis. J Therm Anal Calorim. 2012;109:227–35.CrossRefGoogle Scholar
  50. 50.
    El Harfi K, Mokhlisse A, Chanâa MB. Effect of water vapor on the pyrolysis of the Moroccan (Tarfaya) oil shale. J Anal Appl Pyrol. 1999;48:65–76.CrossRefGoogle Scholar
  51. 51.
    Balagurumurthy B, Srivastava V, Vinit Kumar J, Biswas B, Singh R, et al. Value addition to rice straw through pyrolysis in hydrogen and nitrogen environments. Bioresour Technol. 2015;188:273–9.CrossRefGoogle Scholar
  52. 52.
    Ly HV, Kim SS, Choi JH, Woo HC, Kim J. Fast pyrolysis of Saccharina japonica alga in a fixed-bed reactor for bio-oil production. Energy Convers Manag. 2016;122:526–34.CrossRefGoogle Scholar
  53. 53.
    Azargohar R, Jacobson KL, Powell EE, Dalai AK. Evaluation of properties of fast pyrolysis products obtained, from Canadian waste biomass. J Anal Appl Pyrol. 2013;104:330–40.CrossRefGoogle Scholar
  54. 54.
    Abnisa F, Arami-Niya A, Wan Daud WMA, Sahu JN, Noor IM. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Convers Manag. 2013;76:1073–82.CrossRefGoogle Scholar
  55. 55.
    Jacobson K, Maheria KC, Dalai AK. Bio-oil valorization: a review. Renew Sustain Energy Rev. 2013;23:91–106.CrossRefGoogle Scholar
  56. 56.
    Miranda R, Bustos-Martinez D, Blanco CS, Villarreal MHG, Cantú MER. Pyrolysis of sweet orange (Citrus sinensis) dry peel. J Anal Appl Pyrol. 2009;86:245–51.CrossRefGoogle Scholar
  57. 57.
    Nurul Islam M, Zailani R, Nasir Ani F. Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and its characterisation. Renew Energy. 1999;17:73–84.CrossRefGoogle Scholar
  58. 58.
    Tsai WT, Lee MK, Chang YM. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J Anal Appl Pyrol. 2006;76:230–7.CrossRefGoogle Scholar
  59. 59.
    Lee MK, Tsai WT, Tsai YL, Lin SH. Pyrolysis of napier grass in an induction-heating reactor. J Anal Appl Pyrol. 2010;88:110–6.CrossRefGoogle Scholar
  60. 60.
    Hoffmann J, Jensen CU, Rosendahl LA. Co-processing potential of HTL bio-crude at petroleum refineries—part 1: fractional distillation and characterization. Fuel. 2016;65:526–35.CrossRefGoogle Scholar
  61. 61.
    Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94.CrossRefGoogle Scholar
  62. 62.
    Sun P, Heng M, Sun SH, Chen J. Analysis of liquid and solid products from liquefaction of paulownia in hot-compressed water. Energy Convers Manag. 2011;52:924–33.CrossRefGoogle Scholar
  63. 63.
    Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels. 2006;20:848–89.CrossRefGoogle Scholar
  64. 64.
    Speight JG. Gasification of Unconventional Feedstocks, 1st ed. Laramie, Wyoming: Gulf Professional Publishing, Gasif. Unconv. Feed. CD & W Inc.; 2014.Google Scholar
  65. 65.
    Sutcu H, Toroglu I, Piskin S. Structural characterization of oil component of high temperature pyrolysis tars. Energy Sources. 2005;27:521–34.CrossRefGoogle Scholar
  66. 66.
    Bordoloi N, Narzari R, Chutia RS, Bhaskar T, Kataki R. Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions. Bioresour Technol. 2015;178:83–9.CrossRefGoogle Scholar
  67. 67.
    Saikia R, Chutia RS, Kataki R, Pant KK. Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials. Bioresour Technol. 2015;188:265–72.CrossRefGoogle Scholar
  68. 68.
    Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, et al. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresour Technol. 2013;148:196–201.CrossRefGoogle Scholar
  69. 69.
    Yakub MI, Abdalla AY, Feroz KK, Suzana Y. Pyrolysis of oil palm residues in a fixed bed tubular reactor. J Power Energy Eng. 2015;3:185–93.CrossRefGoogle Scholar
  70. 70.
    Kim P, Johnson A, Edmunds CW, Radosevich M, Vogt F, Rials TG, et al. Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis. Energy Fuels. 2011;25:4693–703.CrossRefGoogle Scholar
  71. 71.
    Cetin E, Moghtaderi B, Gupta R, Wall TF. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel. 2004;83:2139–50.CrossRefGoogle Scholar
  72. 72.
    Hu S, Xiang J, Sun L, Xu M, Qiu J, Fu P. Characterization of char from rapid pyrolysis of rice husk. Fuel Process Technol. 2008;89:1096–105.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of Calcutta, UCSTAKolkataIndia

Personalised recommendations