Advertisement

Synthesis, characterization and low-temperature carbonation of mesoporous magnesium oxide

  • Sondes Hamdi
  • Laetitia Vieille
  • Kais Nahdi
  • Loïc FavergeonEmail author
Article
  • 26 Downloads

Abstract

A sample of MgO was successfully synthesized using thermal decomposition of hydromagnesite and compared to commercial material. The characterization of materials using XRD, SEM, BET and BJH methods showed that the thermal decomposition way led to rectangular mesoporous microsheets with high specific surface area of 100 m2 g−1. This porous magnesium oxide has been shown to be a potential candidate for CO2 capture at low temperatures range (30 and 50 °C), low pressures of CO2 (\( P_{{{\text{CO}}_{2} }} = 600\;{\text{mbar}} \)) and in the presence of water vapor (\( P_{{{\text{H}}_{2} {\text{O}}}} = 15\;{\text{mbar}} \)). In these conditions, our results show that 11% of MgO was converted to hydrated magnesium carbonate MgCO3·3H2O after 8 h of carbonation in a thermobalance and reached 54% after 24 h of carbonation using tube furnace. After carbonation, hydration reaction pore size and surface area have noticeably changed.

Keywords

CO2 capture Magnesium oxide Mesoporous Nesquehonite Thermogravimetric analysis 

Notes

References

  1. 1.
    Intergovernmental Panel on Climate Change, Edenhofer O, editors. Climate change 2014: mitigation of climate change: Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press; 2014.Google Scholar
  2. 2.
    Seifritz W. CO2 disposal by means of silicates. Nature. 1990;345(6275):486.CrossRefGoogle Scholar
  3. 3.
    Kumar S, Saxena SK. A comparative study of CO2 sorption properties for different oxides. Mater Renew Sustain Energy. 2014;3:30.  https://doi.org/10.1007/s40243-014-0030-9.CrossRefGoogle Scholar
  4. 4.
    Rouchon L, Favergeon L, Pijolat M. Analysis of the kinetic slowing down during carbonation of CaO by CO2. J Therm Anal Calorim. 2013;113(3):1145–55.CrossRefGoogle Scholar
  5. 5.
    Bouquet E, Leyssens G, Schönnenbeck C, Gilot P. The decrease of carbonation efficiency of CaO along calcination–carbonation cycles: experiments and modelling. Chem Eng Sci. 2009;64(9):2136–46.CrossRefGoogle Scholar
  6. 6.
    Bhatia SK, Perlmutter DD. Unified treatment of structural effects in fluid-solid reactions. AIChE J. 1983;29(2):281–9.CrossRefGoogle Scholar
  7. 7.
    Rouchon L, Favergeon L, Pijolat M. New kinetic model for the rapid step of calcium oxide carbonation by carbon dioxide. J Therm Anal Calorim. 2014;116(3):1181–8.CrossRefGoogle Scholar
  8. 8.
    Sun P, Grace JR, Jim Lim C, Anthony EJ. A discrete-pore-size-distribution-based gas–solid model and its application to the reaction. Chem Eng Sci. 2008;63(1):57–70.CrossRefGoogle Scholar
  9. 9.
    Selvamani T, Sinhamahapatra A, Bhattacharjya D, Mukhopadhyay I. Rectangular MgO microsheets with strong catalytic activity. Mater Chem Phys. 2011;129(3):853–61.CrossRefGoogle Scholar
  10. 10.
    Fagerlund J, Highfield J, Zevenhoven R. Kinetics studies on wet and dry gas–solid carbonation of MgO and Mg(OH)2 for CO2 sequestration. RSC Adv. 2012;2(27):10380.CrossRefGoogle Scholar
  11. 11.
    Kumar S, Saxena SK, Drozd V, Durygin A. An experimental investigation of mesoporous MgO as a potential pre-combustion CO2 sorbent. Mater Renew Sustain Energy. 2015;4:8.  https://doi.org/10.1007/s40243-015-0050-0.CrossRefGoogle Scholar
  12. 12.
    Bhagiyalakshmi M, Lee JY, Jang HT. Synthesis of mesoporous magnesium oxide: its application to CO2 chemisorption. Int J Greenh Gas Control. 2010;4(1):51–6.CrossRefGoogle Scholar
  13. 13.
    Torres-Rodríguez DA, Pfeiffer H. Thermokinetic analysis of the MgO surface carbonation process in the presence of water vapor. Thermochim Acta. 2011;516(1–2):74–8.CrossRefGoogle Scholar
  14. 14.
    Song G, Ding Y-D, Zhu X, Liao Q. Carbon dioxide adsorption characteristics of synthesized MgO with various porous structures achieved by varying calcination temperature. Colloids Surf Physicochem Eng Asp. 2015;470:39–45.CrossRefGoogle Scholar
  15. 15.
    Lin Y, Zheng M, Ye C, Power IM. Thermogravimetric analysis–mass spectrometry (TGA-MS) of hydromagnesite from Dujiali Lake in Tibet, China. J Therm Anal Calorim. 2018;133(3):1429–37.CrossRefGoogle Scholar
  16. 16.
    Niu H, Yang Q, Tang K, Xie Y. A simple solution calcination route to porous MgO nanoplates. Microporous Mesoporous Mater. 2006;96(1–3):428–33.CrossRefGoogle Scholar
  17. 17.
    Jauffret G, Morrison J, Glasser FP. On the thermal decomposition of nesquehonite. J Therm Anal Calorim. 2015;122(2):601–9.CrossRefGoogle Scholar
  18. 18.
    Koga N. In: Vyazovkin S, Koga N, Schick C, editors. Handbook of thermal analysis and calorimetry, chapter 6, vol. 6. 2nd ed. Amsterdam: Elsevier; 2018. p. 213–51.Google Scholar
  19. 19.
    Sing K, Everett D, Haul R, Moscou L, Pierotti R, Rouquerol J, et al. Reporting physisorption data for 1, 0 × 10-3 1, 2 × 10-3 1, 4 × 10-3 1, 6 × 10-3 1, 8 × 10-3 2, 0 × 10-3-8-6-4-2 0 2 4-1 K) I II III gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57:603–19.CrossRefGoogle Scholar
  20. 20.
    Tiffonnet A-L, Blondeau P, Allard F, Haghighat F. Sorption isotherms of acetone on various building materials. Indoor Built Environ. 2002;11(2):95–104.CrossRefGoogle Scholar
  21. 21.
    Sawada Y, Uematsu K, Mizutani N, Kato M. Thermal decomposition of hydromagnesite 4MgCO3· Mg(OH)2· 4H2O. J Inorg Nucl Chem. 1978;40(6):979–82.CrossRefGoogle Scholar
  22. 22.
    Sawada Y, Uematsu K, Mizutani N, Kato M. Thermal decomposition of hydromagnesite 4MgCO3-Mg(OH)2-4H2O under different partial pressures of carbon dioxide. Thermochim Acta. 1978;27(1–3):45–59.CrossRefGoogle Scholar
  23. 23.
    Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutani N, Kato M. Thermogravimetric study on the decomposition of hydromagnesite 4MgCO3· Mg(OH)2· 4H2O. Thermochim Acta. 1979;33:127–40.CrossRefGoogle Scholar
  24. 24.
    Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutani N, Kato M. Thermal decomposition of basic magnesium carbonates under high-pressure gas atmoshpheres. Thermochim Acta. 1979;32(1–2):277–91.CrossRefGoogle Scholar
  25. 25.
    Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutani N, Kato M. Isothermal differential scanning calorimetry on an exothermic phenomenon during thermal decomposition of hydromagnesite 4MgCO3· Mg(OH)2· 4H2O. Thermochim Acta. 1979;34(2):233–7.CrossRefGoogle Scholar
  26. 26.
    Padeste C, Oswald HR, Reller A. The thermal behaviour of pure and nickel-doped hydromagnesite in different atmospheres. Mater Res Bull. 1991;26(12):1263–8.CrossRefGoogle Scholar
  27. 27.
    Hollingbery LA, Hull TR. The thermal decomposition of huntite and hydromagnesite—a review. Thermochim Acta. 2010;509(1–2):1–11.CrossRefGoogle Scholar
  28. 28.
    Todor D. Thermal analysis of minerals. London: Abacus Press; 1976.Google Scholar
  29. 29.
    Coleyshaw EE, Crump G, Griffith WP. Vibrational spectra of the hydrated carbonate minerals ikaite, monohydrocalcite, lansfordite and nesquehonite. Spectrochim Acta A Mol Biomol Spectrosc. 2003;59(10):2231–9.CrossRefGoogle Scholar
  30. 30.
    Frost RL, Palmer SJ. Infrared and infrared emission spectroscopy of nesquehonite Mg(OH)(HCO3)·2H2O-implications for the formula of nesquehonite. Spectrochim Acta A Mol Biomol Spectrosc. 2011;78(4):1255–60.CrossRefGoogle Scholar
  31. 31.
    Frost RL, Dickfos M. Hydrated double carbonates—a Raman and infrared spectroscopic study. Polyhedron. 2007;26(15):4503–8.CrossRefGoogle Scholar
  32. 32.
    Edwards HGM, Villar SEJ, Jehlicka J, Munshi T. FT-Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals. Spectrochim Acta A Mol Biomol Spectrosc. 2005;61(10):2273–80.CrossRefGoogle Scholar
  33. 33.
    Frost RL, Bahfenne S, Graham J. Raman spectroscopic study of the magnesium-carbonate minerals—artinite and dypingite. J Raman Spectrosc. 2009;40(8):855–60.CrossRefGoogle Scholar
  34. 34.
    Cornu D, Guesmi H, Krafft J-M, Lauron-Pernot H. Lewis acido-basic interactions between CO2 and MgO surface: DFT and DRIFT approaches. J Phys Chem C. 2012;116(11):6645–54.CrossRefGoogle Scholar
  35. 35.
    Jin F, Al-Tabbaa A. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc. Chemosphere. 2014;117:285–94.CrossRefGoogle Scholar
  36. 36.
    Yin W, Wang Y, Ji Q, Yao J, Hou Y, Wang L, et al. Synthesis and formation mechanism of micro/nano flower-like MgCO3·5H2O. Int J Miner Metall Mater. 2014;21(3):304–10.CrossRefGoogle Scholar
  37. 37.
    Chaka AM, Felmy AR. Ab initio thermodynamic model for magnesium carbonates and hydrates. J Phys Chem A. 2014;118(35):7469–88.CrossRefGoogle Scholar
  38. 38.
    Hill RJ, Canterford JH, Moyle FJ. New data for lansfordite. Miner Mag. 1982;46(341):453–7.CrossRefGoogle Scholar
  39. 39.
    Farmer VC. The infrared spectra of minerals. London: Mineralogical Society; 1974.CrossRefGoogle Scholar
  40. 40.
    Kloprogge JT, Martens WN, Nothdurft L, Duong LV, Webb GE. Low temperature synthesis and characterization of nesquehonite. J Mater Sci Lett. 2003;22(11):825–9.CrossRefGoogle Scholar
  41. 41.
    Ferrini V, De Vito C, Mignardi S. Synthesis of nesquehonite by reaction of gaseous CO2 with Mg chloride solution: its potential role in the sequestration of carbon dioxide. J Hazard Mater. 2009;168(2–3):832–7.CrossRefGoogle Scholar
  42. 42.
    Hopkinson L, Kristova P, Rutt K, Cressey G. Phase transitions in the system MgO–CO2–H2O during CO2 degassing of Mg-bearing solutions. Geochim Cosmochim Acta. 2012;76:1–13.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Laboratoire d’Application de la Chimie Aux Ressources et Substances Naturelles et à l’EnvironnementUniversité de Carthage, Faculté des Sciences de BizerteZarzouna, BizerteTunisia
  2. 2.Mines Saint-Etienne, Univ. LyonCNRS, UMR 5307 LGF, Centre SPINSaint-ÉtienneFrance

Personalised recommendations