Advertisement

Synergistic nucleation effect of calcium sulfate whisker and β-nucleating agent dicyclohexyl-terephthalamide in isotactic polypropylene

  • Yue-Fei ZhangEmail author
  • Xiang-Feng Lin
  • Yan Li
  • Bin He
Article
  • 9 Downloads

Abstract

The crystallization and melting behaviors and mechanical properties of isotactic polypropylene (iPP) containing a certain amount of stearic acid-modified calcium sulfate whiskers (S-CSW) and dicyclohexyl-terephthalamide (TMB-5) were investigated. The results revealed that S-CSW and TMB-5 had obvious synergistic nucleation effect in iPP. At the optimum addition concentration, the crystallization peak temperature of nucleated iPP increased by 8.1 °C compared with that of pure iPP, and the relative content of β-crystals in iPP reached to 0.9012. The impact strength, tensile strength and flexural modulus of iPP increased by approximately 61.8%, 1.71% and 26.1%, respectively, which were obviously better than that of iPP nucleated with S-CSW or TMB-5 independently.

Keywords

Compound nucleating agent Calcium sulfate whiskers Mechanical properties Isotactic polypropylene Synergistic effect 

Notes

Acknowledgements

This work was supported by Hunan Provincial Natural Science Foundation of China (No. 2019JJ40294) and the Research Innovation Program for College Graduates of Changsha University of Science and Technology (No. CX2018SS17).

References

  1. 1.
    Torre J, Cortázar M, Gómez MA, Marco C, Ellis G, Riekel C, Dumas P. Nature of the crystalline interphase in sheared IPP/vectra fiber model composites by microfocus X-ray diffraction and IR microspectroscopy using synchrotron radiation. Macromolecules. 2006;39(16):5564–8.CrossRefGoogle Scholar
  2. 2.
    Zhou PZ, Zhang YF, Lin XF. Thermal stability of nucleation effect of different β-nucleating agents in isotactic polypropylene. J Therm Anal Calorim. 2018;132(3):1845–52.CrossRefGoogle Scholar
  3. 3.
    Chen Y, Yin Q, Zhang X, Xue X, Jia H. The crystallization behaviors and rheological properties of polypropylene/graphene nanocomposites: the role of surface structure of reduced graphene oxide. Thermochim Acta. 2018;661:124–36.CrossRefGoogle Scholar
  4. 4.
    Fanegas N, Gómez M, Marco C, Jiménez I, Ellis G. Influence of a nucleating agent on the crystallization behaviour of isotactic polypropylene and elastomer blends. Polymer. 2007;48(18):5324–31.CrossRefGoogle Scholar
  5. 5.
    Zhang YF, He B, Hou HH, Guo LH. Isothermal crystallization of isotactic polypropylene nucleated with a novel aromatic heterocyclic phosphate nucleating agent. J Macromol Sci Part B. 2017;56(11–12):811–20.CrossRefGoogle Scholar
  6. 6.
    Weon JI, Sue HJ. Mechanical properties of talc-and CaCO3-reinforced high-crystallinity polypropylene composites. J Mater Sci. 2006;41(8):2291–300.CrossRefGoogle Scholar
  7. 7.
    Avella M, Cosco S, Lorenzo MLD, Pace ED, Errico ME, Gentile G. iPP based nanocomposites filled with calcium carbonate nanoparticles: structure/properties relationships. Macromol Symp. 2006;234(1):156–62.CrossRefGoogle Scholar
  8. 8.
    Wang Y, Li Y, Yuan A, Yuan B, Lei X, Ma Q, Han J, Wang J, Chen J. Preparation of calcium sulfate whiskers by carbide slag through hydrothermal method. Cryst Res Technol. 2014;49(10):800–7.CrossRefGoogle Scholar
  9. 9.
    Sargut ST, Sayan P, Kiran B. Gypsum crystallization in the presence of Cr3+ and citric acid. Chem Eng Technol. 2010;33(5):804–11.CrossRefGoogle Scholar
  10. 10.
    Yuan W, Cui J, Cai Y, Xu S. A novel surface modification for calcium sulfate whisker used for reinforcement of poly (vinyl chloride). J Polym Res. 2015;22(9):173.CrossRefGoogle Scholar
  11. 11.
    Dou Q, Duan J. Melting and crystallization behaviors, morphology, and mechanical properties of β-polypropylene/polypropylene-graft-maleic anhydride/calcium sulfate whisker composites. Polym Compos. 2016;37(7):2121–32.CrossRefGoogle Scholar
  12. 12.
    Liu C, Zhao Q, Wang Y, Shi P, Jiang M. Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum. Appl Surf Sci. 2016;360:263–9.CrossRefGoogle Scholar
  13. 13.
    Yuan W, Cui J, Xu S. Mechanical properties and interfacial interaction of modified calcium sulfate whisker/poly (vinyl chloride) composites. J Mater Sci Technol. 2016;32(12):1352–60.CrossRefGoogle Scholar
  14. 14.
    Yang JN, Nie SB. Effects of calcium sulfate whisker on the mechanical property, morphological structure and thermal degradation of poly (lactic acid) composites. Polym Degrad Stabil. 2017;144:270–80.CrossRefGoogle Scholar
  15. 15.
    Wang J, Yang K, Lu S. Preparation and characteristic of novel silicone rubber composites based on organophilic calcium sulfate whisker. High Perform Polym. 2011;23(2):141–50.CrossRefGoogle Scholar
  16. 16.
    Zare Y. The roles of nanoparticles accumulation and interphase properties in properties of polymer particulate nanocomposites by a multi-step methodology. Compos A Appl Sci Manuf. 2016;91:127–32.CrossRefGoogle Scholar
  17. 17.
    Bahar E, Ucar N, Onen A, Wang Y, Oksüz M, Ayaz O, Ucar M, Demir A. Thermal and mechanical properties of polypropylene nanocomposite materials reinforced with cellulose nano whiskers. J Appl Polym Sci. 2012;125(4):2882–9.CrossRefGoogle Scholar
  18. 18.
    Meng MR, Dou Q. Effect of filler treatment on crystallization, morphology and mechanical properties of polypropylene/calcium carbonate composites. J Macromol Sci B. 2009;48(2):213–25.CrossRefGoogle Scholar
  19. 19.
    Dang L, Nai X, Zhu D, Xu N, Dong Y, Li W. Effects of different compatilizers on mechanical, crystallization and thermal properties of polypropylene/magensium oxysulfate whisker composites. J Adhes Sci Technol. 2017;31(16):1839–57.CrossRefGoogle Scholar
  20. 20.
    Zhu D, Nai X, Lan S, Bian S, Liu X, Li W. Surface modification of magnesium hydroxide sulfate hydrate whiskers using a silane coupling agent by dry process. Appl Surf Sci. 2016;390:25–30.CrossRefGoogle Scholar
  21. 21.
    Dong F, Liu J, Tan H, Wu C, He X, He P. Preparation of calcium sulfate hemihydrate and application in polypropylene composites. J Nanosci Nanotechnol. 2017;17(9):6970–5.CrossRefGoogle Scholar
  22. 22.
    Zhang YF, Hou HH, Guo LH. Effects of cyclic carboxylate nucleating agents on nucleus density and crystallization behavior of isotactic polypropylene. J Therm Anal Calorim. 2018;131(2):1483–90.CrossRefGoogle Scholar
  23. 23.
    Yang S, Li Y, Liang YY, Wang WJ, Luo Y, Xu JZ, Li ZM. Graphene oxide induced isotactic polypropylene crystallization: role of structural reduction. RSC Adv. 2016;6(28):23930–41.CrossRefGoogle Scholar
  24. 24.
    Jiang C, Zhao S, Xin Z. Influence of a novel β-nucleating agent on the structure, mechanical properties, and crystallization behavior of isotactic polypropylene. J Thermoplast Compos Mater. 2015;28(5):610–29.CrossRefGoogle Scholar
  25. 25.
    Zhang YF, Zhou PZ, Jiang YZ, Yang X. The relationship between side chain isomerism of aliphatic C4 substituted 1, 3, 5-benzenetricarboxylamides and nucleation effects in isotactic polypropylene. Thermochim Acta. 2017;655:219–25.CrossRefGoogle Scholar
  26. 26.
    Lotz B, Graff S, Straupe C, Wittmann J. Single crystals of γ phase isotactic polypropylene: combined diffraction and morphological support for a structure with non-parallel chains. Polymer. 1991;32(16):2902–10.CrossRefGoogle Scholar
  27. 27.
    Lotz B, Wittmann J, Lovinger A. Structure and morphology of poly (propylenes): a molecular analysis. Polymer. 1996;37(22):4979–92.CrossRefGoogle Scholar
  28. 28.
    Lotz B. A new ε crystal modification found in stereodefective isotactic polypropylene samples. Macromolecules. 2014;47(21):7612–24.CrossRefGoogle Scholar
  29. 29.
    Varley RJ, Dell’Olio M, Yuan Q, Khor S, Leong K, Bateman S. Different β nucleants and the resultant microstructural, fracture, and tensile properties for filled and unfilled ISO polypropylene. J Appl Polym Sci. 2013;128(1):619–27.CrossRefGoogle Scholar
  30. 30.
    Ma LF, Wang WK, Bao RY, Yang W, Xie BH, Yang MB. Toughening of polypropylene with β-nucleated thermoplastic vulcanizates based on polypropylene/ethylene-propylene-diene rubber blends. Mater Des. 2013;51:536–43.CrossRefGoogle Scholar
  31. 31.
    Jones AT, Aizlewood JM, Beckett D. Crystalline forms of isotactic polypropylene. Macromol Chem Phys. 1964;75(1):134–58.CrossRefGoogle Scholar
  32. 32.
    Byelov D, Panine P, Remerie K, Biemond E, Alfonso GC, de Jeu WH. Crystallization under shear in isotactic polypropylene containing nucleators. Polymer. 2008;49(13–14):3076–83.CrossRefGoogle Scholar
  33. 33.
    Fillon B, Thierry A, Wittmann J, Lotz B. Self-nucleation and recrystallization of polymers. Isotactic polypropylene, β phase: β-α conversion and β-α growth transitions. Polym Sci B Polym Phys. 1993;31(10):1407–24.CrossRefGoogle Scholar
  34. 34.
    Zhang YF, Zhou PZ, Guo LH, Hou HH. The relationship between crystal structure and nucleation effect of 1, 3, 5-benzenetricarboxylic acid tris (phenylamide) in isotactic polypropylene. Colloid Polym Sci. 2017;295(4):619–26.CrossRefGoogle Scholar
  35. 35.
    Dong M, Guo ZX, Yu J, Su ZQ. Study of the assembled morphology of aryl amide derivative and its influence on the nonisothermal crystallizations of isotactic polypropylene. J Polym Sci B Polym Phys. 2009;47(3):314–25.CrossRefGoogle Scholar
  36. 36.
    Ren XQ, Zhang YF, He J, Li Y. Nucleation effect of adipic acid metal salts in isotactic polypropylene. J Therm Anal Calorim. 2019;135(6):3321–8.CrossRefGoogle Scholar
  37. 37.
    Varga J, Mudra I, Ehrenstein GW. Highly active thermally stable β-nucleating agents for isotactic polypropylene. J Appl Polym Sci. 1999;74(10):2357–68.CrossRefGoogle Scholar
  38. 38.
    Zhang ZS, Wang CG, Meng YZ, Mai KC. Synergistic effects of toughening of nano-CaCO3 and toughness of β-polypropylene. Compos A Appl Sci Manuf. 2012;43(1):189–97.CrossRefGoogle Scholar
  39. 39.
    Xu W, Yu MW, Shi SH, Shi H, Nie M. Simultaneous durability and strength enhancement of β-polypropylene through montmorillonite and melt-soluble β-nucleating agent addition. Polym Test. 2018;65:150–5.CrossRefGoogle Scholar
  40. 40.
    Naffakh M, Díez-Pascual AM, Marco C, Ellis G. Novel polypropylene/inorganic fullerene-like WS2 nanocomposites containing a β-nucleating agent: mechanical, tribological and rheological properties. Mater Chem Phys. 2014;144(1–2):98–106.CrossRefGoogle Scholar
  41. 41.
    Li J, Cheung W. On the deformation mechanisms of β-polypropylene: 1. Effect of necking on β-phase PP crystals. Polymer. 1998;39(26):6935–40.CrossRefGoogle Scholar
  42. 42.
    Li J, Cheung W, Jia D. A study on the heat of fusion of β-polypropylene. Polymer. 1999;40(5):1219–22.CrossRefGoogle Scholar
  43. 43.
    Mihajlović S, Daković A, Sekulić Ž, Jovanović V, Vučinić D. Influence of the modification method on the surface adsorption of stearic acid by natural calcite. J Serb Chem Soc. 2009;67:1–19.CrossRefGoogle Scholar
  44. 44.
    Xiang G, Liu T, Zhang Y, Xue N. Synthesis of polypropylene composites with modified calcium sulfate whisker prepared from shale vanadium neutralization slag. Results Phys. 2018;10:28–35.CrossRefGoogle Scholar
  45. 45.
    Horváth F, Gombár T, Varga J, Menyhárd A. Crystallization, melting, supermolecular structure and properties of isotactic polypropylene nucleated with dicyclohexyl-terephthalamide. J Therm Anal Calorim. 2016;128(2):925–35.CrossRefGoogle Scholar
  46. 46.
    Di Lorenzo M, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci. 1999;24(6):917–50.CrossRefGoogle Scholar
  47. 47.
    Supaphol P. Nonisothermal bulk crystallization and subsequent melting behavior of syndiotactic polypropylenes: crystallization from the melt state. J Appl Polym Sci. 2000;78(2):338–54.CrossRefGoogle Scholar
  48. 48.
    Stocker W, Schumacher M, Graff S, Thierry A, Wittmann JC, Lotz B. Epitaxial crystallization and AFM investigation of a frustrated polymer structure: isotactic poly (propylene), β phase. Macromolecules. 1998;31(3):807–14.CrossRefGoogle Scholar
  49. 49.
    Sun X, Li H, Wang J, Yan S. Shear-induced interfacial structure of isotactic polypropylene (iPP) in iPP/fiber composites. Macromolecules. 2006;39(25):8720–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Chemistry and Food EngineeringChangsha University of Science and TechnologyChangshaPeople’s Republic of China

Personalised recommendations