Advertisement

Influence of cerium oxide nanoparticles on thermal conductivity of antifreeze

Preparation and stability of nanofluid using surfactant
  • Ali Taghizadeh
  • Mohsen Taghizadeh
  • Mohammad Azimi
  • Ali Sulaiman Alsagri
  • Abdulrahman A. Alrobaian
  • Masoud AfrandEmail author
Article
  • 15 Downloads

Abstract

The objective of this work was to examine the thermal conductivity of a stable nano-antifreeze containing cetyltrimethylammonium bromide coated cerium (IV) oxide nanoparticles (CeO2 NPs). The considered base fluid is a mixture of 50:50 ethylene glycol (EG) and deionized water. The morphology and structure of the samples are characterized with X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray analysis, and Fourier-transform infrared spectroscopy. The experiments are done in the volume concentration range of 0.1–0.9%, CNT volume concentration range of 0.015–0.135% and the temperature range of 20–50 °C. The thermal conductivity (TC) of the prepared nanofluid samples was measured using a KD2-Pro thermal properties analyzer. The outcomes showed that boosting the temperature and the solid volume concentration causes an increase in the thermal conductivity ratio of the CeO2/EG–water nanofluid. The findings also indicated that the TC of CeO2/EG–water nanofluid augments up to 36.13% at volume concentration of 0.135% and 50 °C. Furthermore, it was depicted that the use of CeO2 NPs lead to a higher TC compared to other NPs in the same base fluid. Finally, a new correlation was proposed for predicting the TC and thermal conductivity enhancement of CeO2/EG–water in terms of nanoparticle concentration and temperature.

Keywords

Cerium (IV) oxide New nano-antifreeze Thermal conductivity Stability Surfactant 

Abbreviations

CTAB

Cetyltrimethylammonium bromide

CMC

Critical micelle concentration

NP

Nanoparticle

TC

Thermal conductivity (W m−1 K−1)

EG

Ethylene glycol

TCE

Thermal conductivity enhancement

TCR

Thermal conductivity ratio

FESEM

Field emission scanning electron microscopy

FTIR

Fourier transform infrared spectroscopy

XRD

X-ray diffraction

EDAX

Energy-dispersive X-ray analysis

List of symbols

K

Dimensionless shape factor

D

Average crystal size (Å)

Β

The line broadening at half the maximum intensity (radian)

Λ

X-ray wavelength

Θ

The Bragg angle (°)

Notes

References

  1. 1.
    Soltanimehr M, Afrand M. Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems. Appl Therm Eng. 2016;105:716–23.  https://doi.org/10.1016/j.applthermaleng.2016.03.089.CrossRefGoogle Scholar
  2. 2.
    Al-Rashed AAAA, Shahsavar A, Entezari S, Moghimi MA, Adio SA, Nguyen TK. Numerical investigation of non-Newtonian water-CMC/CuO nanofluid flow in an offset strip-fin microchannel heat sink: thermal performance and thermodynamic considerations. Appl Therm Eng. 2019;155:247–58.CrossRefGoogle Scholar
  3. 3.
    Al-Rashed AAAA, Shahsavar A, Rasooli O, Moghimi MA, Karimipour A, Tran MD. Numerical assessment into the hydrothermal and entropy generation characteristics of biological water–silver nano-fluid in a wavy walled microchannel heat sink. Int Commun Heat Mass Transf. 2019;104:118–26.CrossRefGoogle Scholar
  4. 4.
    Esfe MH, Hajmohammad H, Toghraie D, Rostamian H, Mahian O, Wongwises S. Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy. 2017;137:160–71.CrossRefGoogle Scholar
  5. 5.
    Shahsavar A, Rahimi Z, Salehipour H. Nanoparticle shape effects on thermal–hydraulic performance of boehmite alumina nanofluid in a horizontal double-pipe minichannel heat exchanger. Heat Mass Transf. 2019;55:1741–51,  https://doi.org/10.1007/s00231-018-02558-x.CrossRefGoogle Scholar
  6. 6.
    Esfe MH, Saedodin S, Biglari M, Rostamian H. Experimental investigation of thermal conductivity of CNTs-Al2O3/water: a statistical approach. Int Commun Heat Mass Transf. 2015;69:29–33.CrossRefGoogle Scholar
  7. 7.
    Esfe MH, Saedodin S, Biglari M, Rostamian H. An experimental study on thermophysical properties and heat transfer characteristics of low volume concentrations of Ag-water nanofluid. Int Commun Heat Mass Transf. 2016;74:91–7.CrossRefGoogle Scholar
  8. 8.
    Shahsavar A, Khanmohammadi S, Toghraie D, Salihepour H. Experimental investigation and develop ANNs by introducing the suitable architectures and training algorithms supported by sensitivity analysis: Measure thermal conductivity and viscosity for liquid paraffin based nanofluid containing Al2O3 nanoparticles. J Mol Liq. 2019;276:850–60.CrossRefGoogle Scholar
  9. 9.
    Shahsavar A, Khanmohammadi S, Karimipour A, Goodarzi M. A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin–Fe3O4 mixture to develop models for both thermal conductivity and viscosity: a new approach of GMDH type of neural network. Int J Heat Mass Transf. 2019;131:432–41.CrossRefGoogle Scholar
  10. 10.
    Mahian O, Kolsi L, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—part I: fundamental and theory. Phys Rep. 2018;1:1.  https://doi.org/10.1016/j.physrep.2018.11.004.Google Scholar
  11. 11.
    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—part II: applications. Phys Rep. 2018.  https://doi.org/10.1016/J.PHYSREP.2018.11.003.Google Scholar
  12. 12.
    Hemmat Esfe MH, Rejvani M, Karimpour R, Arani AAA. Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT–Al2O3 nanoparticles by correlation and ANN methods using experimental data. J Therm Anal Calorim. 2017;128(3):1359–71.CrossRefGoogle Scholar
  13. 13.
    Hemmat Esfe MH, Hajmohammad MH. Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40: 60) aqueous nanofluid using NSGA-II coupled with RSM. J Mol Liq. 2017;238:545–52.CrossRefGoogle Scholar
  14. 14.
    Hemmat Esfe MH, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT-SiO2 (30: 70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications. J Therm Anal Calorim. 2018;131(2):1437–47.CrossRefGoogle Scholar
  15. 15.
    Hemmat Esfe MH, Esfandeh S, Amiri MK, Afrand M. A novel applicable experimental study on the thermal behavior of SWCNTs (60%)-MgO (40%)/EG hybrid nanofluid by focusing on the thermal conductivity. Powder Technol. 2019;342:998–1007.CrossRefGoogle Scholar
  16. 16.
    Hemmat Esfe MH, Rostamian H, Sarlak MR, Rejvani M, Alirezaie A. Rheological behavior characteristics of TiO2-MWCNT/10w40 hybrid nano-oil affected by temperature, concentration and shear rate: an experimental study and a neural network simulating. Phys E Low-dimen Syst Nanostruct. 2017;94:231–40.CrossRefGoogle Scholar
  17. 17.
    Hemmat Esfe MH, Saedodin S, Rejvani M, Shahram J. Experimental investigation, model development and sensitivity analysis of rheological behavior of ZnO/10W40 nano-lubricants for automotive applications. Phys E Low-dimen Syst Nanostruct. 2017;90:194–203.CrossRefGoogle Scholar
  18. 18.
    Hemmat Esfe MH, Hajmohammad H, Moradi R, Arani AAA. Multi-objective optimization of cost and thermal performance of double walled carbon nanotubes/water nanofluids by NSGA-II using response surface method. Appl Therm Eng. 2017;112:1648–57.CrossRefGoogle Scholar
  19. 19.
    Hemmat Esfe MH, Arani AAA, Niroumand AH, Yan WM, Karimipour A. Mixed convection heat transfer from surface-mounted block heat sources in a horizontal channel with nanofluids. Int J Heat Mass Transf. 2015;89:783–91.CrossRefGoogle Scholar
  20. 20.
    Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes. Thermochim Acta. 2015;617:102–10.CrossRefGoogle Scholar
  21. 21.
    Alsarraf J, Bagherzadeh SA, Shahsavar A, Rostamzadeh M, Trinh PV, Tran MD. Rheological properties of SWCNT/EG mixture by a new developed optimization approach of LS-support vector regression according to empirical data. Phys A. 2019;525:912–20.CrossRefGoogle Scholar
  22. 22.
    Liu WI, Alsarraf J, Shahsavar A, Rostamzadeh M, Afrand M, Nguyen TK. Impact of oscillating magnetic field on the thermal-conductivity of water–Fe3O4 and water–Fe3O4/CNT ferro-fluids: experimental study. J Magn Magn Mater. 2019;484:258–65.CrossRefGoogle Scholar
  23. 23.
    Monfared M, Shahsavar A, Bahrebar MR. Second law analysis of turbulent convection flow of boehmite alumina nanofluid inside a double-pipe heat exchanger considering various shapes for nanoparticle. J Therm Anal Calorim. 2019;135:1521–32.CrossRefGoogle Scholar
  24. 24.
    Syam Sundar L, Venkata Ramana E, Singh MK, De Sousa ACM. Viscosity of low volume concentrations of magnetic Fe3O4 nanoparticles dispersed in ethylene glycol and water mixture. Chem Phys Lett. 2012;554:236–42.  https://doi.org/10.1016/j.cplett.2012.10.042.CrossRefGoogle Scholar
  25. 25.
    Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf. 2009;52:4675–82.  https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027.CrossRefGoogle Scholar
  26. 26.
    Reddy MCS, Rao VV. Experimental studies on thermal conductivity of blends of ethylene glycol–water-based TiO2 nanofluids. Int Commun Heat Mass Transf. 2013;46:31–6.  https://doi.org/10.1016/j.icheatmasstransfer.2013.05.009.CrossRefGoogle Scholar
  27. 27.
    Suganthi KS, Leela Vinodhan V, Rajan KS. Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants. Appl Energy. 2014;135:548–59.  https://doi.org/10.1016/j.apenergy.2014.09.023.CrossRefGoogle Scholar
  28. 28.
    Teng TP, Yu CC. Heat dissipation performance of MWCNTs nano-coolant for vehicle. Exp Therm Fluid Sci. 2013;49:22–30.  https://doi.org/10.1016/j.expthermflusci.2013.03.007.CrossRefGoogle Scholar
  29. 29.
    Hemmat Esfe M, Saedodin S, Akbari M, Karimipour A, Afrand M, Wongwises S, Safaei MR, Dahari M. Experimental investigation and development of new correlations for thermal conductivity of CuO/EG–water nanofluid. Int Commun Heat Mass Transf. 2015;65:47–51.  https://doi.org/10.1016/j.icheatmasstransfer.2015.04.006.CrossRefGoogle Scholar
  30. 30.
    Hemmat Esfe M, Afrand M, Karimipour A, Yan W-M, Sina N. An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethy-lene glycol. Int Commun Heat Mass Transf. 2015;67:173–5.  https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2015.07.009.CrossRefGoogle Scholar
  31. 31.
    Hemmat Esfe M, Wongwises S, Naderi A, Asadi A, Safaei MR, Rostamian H, Dahari M, Karimipour A. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;66:100–4.  https://doi.org/10.1016/j.icheatmasstransfer.2015.05.014.CrossRefGoogle Scholar
  32. 32.
    Afrand M, Toghraie D, Sina N. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Int Commun Heat Mass Transf. 2016;75:262–9.  https://doi.org/10.1016/j.icheatmasstransfer.2016.04.023.CrossRefGoogle Scholar
  33. 33.
    Sundar LS, Singh MK, Sousa ACM. Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid. Int Commun Heat Mass Transf. 2013;49:17–24.  https://doi.org/10.1016/j.icheatmasstransfer.2013.08.026.CrossRefGoogle Scholar
  34. 34.
    Keyvani M, Afrand M, Toghraie D, Reiszadeh M. An experimental study on the thermal conductivity of cerium oxide/ethylene glycol nanofluid: developing a new correlation. J Mol Liq. 2018;266:211–7.  https://doi.org/10.1016/J.MOLLIQ.2018.06.010.CrossRefGoogle Scholar
  35. 35.
    Sharafeldin MA, Gróf G. Evacuated tube solar collector performance using CeO2/water nanofluid. J Clean Prod. 2018;185:347–56.  https://doi.org/10.1016/j.jclepro.2018.03.054.CrossRefGoogle Scholar
  36. 36.
    Sharafeldin MA, Gróf G. Experimental investigation of flat plate solar collector using CeO2–water nanofluid. Energy Convers Manag. 2018;155:32–41.  https://doi.org/10.1016/j.enconman.2017.10.070.CrossRefGoogle Scholar
  37. 37.
    Akhgar A, Toghraie D. An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2–MWCNTs hybrid nanofluid: developing a new correlation. Powder Technol. 2018;338:806–18.  https://doi.org/10.1016/j.powtec.2018.07.086.CrossRefGoogle Scholar
  38. 38.
    Kwon YH, Kim D, Li CG, Lee JK, Hong DS, Lee JG, Lee SH, Cho YH, Kim SH. Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger. J Nanosci Nanotechnol. 2011;11:5769–74.  https://doi.org/10.1166/jnn.2011.4399.CrossRefGoogle Scholar
  39. 39.
    Hemmat Esfe M, Afrand M, Wongwises S, Naderi A, Asadi A, Rostami S, Akbari M. Applications of feedforward multilayer perceptron artificial neural networks and empirical correlation for prediction of thermal conductivity of Mg(OH)2–EG using experimental data. Int Commun Heat Mass Transf. 2015;67:46–50.  https://doi.org/10.1016/j.icheatmasstransfer.2015.06.015.CrossRefGoogle Scholar
  40. 40.
    Afrand M, Toghraie D, Ruhani B. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study. Exp Therm Fluid Sci. 2016;77:38–44.  https://doi.org/10.1016/j.expthermflusci.2016.04.007.CrossRefGoogle Scholar
  41. 41.
    Cho T, Baek I, Lee J, Park S. Preparation of nanofluids containing suspended silver particles for enhancing fluid thermal conductivity of fluids. J Ind Eng Chem. 2005;11:400–6.Google Scholar
  42. 42.
    Chen L, Xie H, Li Y, Yu W. Nanofluids containing carbon nanotubes treated by mechanochemical reaction. Thermochim Acta. 2008;477:21–4.  https://doi.org/10.1016/j.tca.2008.08.001.CrossRefGoogle Scholar
  43. 43.
    Glory J, Bonetti M, Helezen M, Mayne-L’Hermite M, Reynaud C. Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes. J Appl Phys. 2008;103:094309.  https://doi.org/10.1063/1.2908229.CrossRefGoogle Scholar
  44. 44.
    Angayarkanni SA, Philip J. Effect of nanoparticles aggregation on thermal and electrical conductivities of nanofluids. J Nanofluids. 2014;3:17–25.  https://doi.org/10.1166/jon.2014.1083.CrossRefGoogle Scholar
  45. 45.
    Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. Experimental investigation on laminar forced convective heat transfer of ferrofluid loaded with carbon nanotubes under constant and alternating magnetic field. Exp Therm Fluid Sci. 2016;76:1–11.CrossRefGoogle Scholar
  46. 46.
    Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes. J Mech Sci Technol. 2016;30:809–15.CrossRefGoogle Scholar
  47. 47.
    Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes. Heat Mass Transf. 2016;52:2293–301.CrossRefGoogle Scholar
  48. 48.
    Yu W, Xie H. A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater. 2012;2012:1–17.  https://doi.org/10.1155/2012/435873.Google Scholar
  49. 49.
    Sidik NAC, Mohammed HA, Alawi OA, Samion S. A review on preparation methods and challenges of nanofluids. Int Commun Heat Mass Transf. 2014;54:115–25.  https://doi.org/10.1016/j.icheatmasstransfer.2014.03.002.CrossRefGoogle Scholar
  50. 50.
    Hwang Y, Park HS, Lee JK, Jung WH. Thermal conductivity and lubrication characteristics of nanofluids. Curr Appl Phys. 2006;6:e67–71.  https://doi.org/10.1016/j.cap.2006.01.014.CrossRefGoogle Scholar
  51. 51.
    Babita SK, Sharma SM. Gupta, Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp Therm Fluid Sci. 2016;79:202–12.  https://doi.org/10.1016/j.expthermflusci.2016.06.029.CrossRefGoogle Scholar
  52. 52.
    Leong K, Mohd Nurfadhillah H, Mohd S, Amer N. The effect of surfactant on stability and thermal conductivity of carbon nanotube based nanofluids. Therm Sci. 2016;20:429–36.  https://doi.org/10.2298/TSCI130914078L.CrossRefGoogle Scholar
  53. 53.
    Kim HS, Park WI, Kang M, Jin HJ. Multiple light scattering measurement and stability analysis. J Phys Chem Solids. 2008;69:1209–12.  https://doi.org/10.1016/j.jpcs.2007.10.062.CrossRefGoogle Scholar
  54. 54.
    Li X, Zhu D, Wang X. Evaluation on dispersion behavior of the aqueous copper nano-suspensions. J Colloid Interface Sci. 2007;310:456–63.  https://doi.org/10.1016/j.jcis.2007.02.067.CrossRefGoogle Scholar
  55. 55.
    Hemmat Esfe M, Abbasian Arani AA, Rezaie M, Yan W-M, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95.  https://doi.org/10.1016/j.icheatmasstransfer.2015.06.003.CrossRefGoogle Scholar
  56. 56.
    Song YY, Bhadeshia HKDH, Suh D-W. Stability of stainless-steel nanoparticle and water mixtures. Powder Technol. 2015;272:34–44.  https://doi.org/10.1016/j.powtec.2014.11.026.CrossRefGoogle Scholar
  57. 57.
    Ghadimi A, Metselaar IH. The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid. Exp Therm Fluid Sci. 2013;51:1–9.  https://doi.org/10.1016/j.expthermflusci.2013.06.001.CrossRefGoogle Scholar
  58. 58.
    Ahmadi Nadooshan A. An experimental correlation approach for predicting thermal conductivity of water–EG based nanofluids of zinc oxide. Phys E Low Dimens Syst Nanostruct. 2017;87:15–9.  https://doi.org/10.1016/j.physe.2016.11.004.CrossRefGoogle Scholar
  59. 59.
    Nabil MF, Azmi WH, Abdul Hamid K, Mamat R, Hagos FY. An experimental study on the thermal conductivity and dynamic viscosity of TiO2–SiO2 nanofluids in water: ethylene glycol mixture. Int Commun Heat Mass Transf. 2017;86:181–9.  https://doi.org/10.1016/j.icheatmasstransfer.2017.05.024.CrossRefGoogle Scholar
  60. 60.
    Leong KY, Razali I, Ahmad KZK, Ong HC, Ghazali MJ, Abdul Rahman MR. Thermal conductivity of an ethylene glycol/water-based nanofluid with copper–titanium dioxide nanoparticles: an experimental approach. Int Commun Heat Mass Transf. 2018;90:23–8.  https://doi.org/10.1016/j.icheatmasstransfer.2017.10.005.CrossRefGoogle Scholar
  61. 61.
    Hemmat Esfe M, Yan W-M, Afrand M, Sarraf M, Toghraie D, Dahari M. Estimation of thermal conductivity of Al2O3/water (40%)–ethylene glycol (60%) by artificial neural network and correlation using experimental data. Int Commun Heat Mass Transf. 2016;74:125–8.  https://doi.org/10.1016/j.icheatmasstransfer.2016.02.002.CrossRefGoogle Scholar
  62. 62.
    Xue W, He H, Zhu J, Yuan P. FTIR investigation of CTAB-Al-montmorillonite complexes. Spectrochim Acta Part A Mol Biomol Spectrosc. 2007;67:1030–6.  https://doi.org/10.1016/j.saa.2006.09.024.CrossRefGoogle Scholar
  63. 63.
    Sperline RP. Infrared spectroscopic study of the crystalline phases of sodium dodecyl sulfate. Langmuir. 1997;13:3715–26.  https://doi.org/10.1021/la9702087.CrossRefGoogle Scholar
  64. 64.
    Kawai T, Umemura J, Takenaka T, Kodama M, Seki S. Fourier transform infrared study on the phase transitions of an octadecyltrimethylammonium chloride–water system. J Colloid Interface Sci. 1985;103:56–61.  https://doi.org/10.1016/0021-9797(85)90076-1.CrossRefGoogle Scholar
  65. 65.
    Padalkar KV, Gaikar VG, Aswal VK. Characterization of mixed micelles of sodium cumene sulfonate with sodium dodecyl sulfate and cetyl trimethylammonium bromide by SANS, FTIR spectroscopy and NMR spectroscopy. J Mol Liq. 2009;144:40–9.  https://doi.org/10.1016/j.molliq.2008.09.004.CrossRefGoogle Scholar
  66. 66.
    Weers JG, Scheuing DR. Structure/performance relationships in monoalkyl/dialkyl cationic surfactant mixtures. J Colloid Interface Sci. 1991;145:563–80.  https://doi.org/10.1016/0021-9797(91)90386-M.CrossRefGoogle Scholar
  67. 67.
    Vaia RA, Teukolsky RK, Giannelis EP. Interlayer structure and molecular environment of alkylammonium layered silicates. Chem Mater. 1994;6:1017–22.  https://doi.org/10.1021/cm00043a025.CrossRefGoogle Scholar
  68. 68.
    Snyder RG. Vibrational study of the chain conformation of the liquid n-paraffins and molten polyethylene. J Chem Phys. 1967;47:1316–60.  https://doi.org/10.1063/1.1712087.CrossRefGoogle Scholar
  69. 69.
    Mahmoodi NM, Taghizadeh M, Taghizadeh A. Mesoporous activated carbons of low-cost agricultural bio-wastes with high adsorption capacity: preparation and artificial neural network modeling of dye removal from single and multicomponent (binary and ternary) systems. J Mol Liq. 2018;1:1.  https://doi.org/10.1016/J.MOLLIQ.2018.07.108.Google Scholar
  70. 70.
    Ahammed N, Asirvatham LG, Titus J, Bose JR, Wongwises S. Measurement of thermal conductivity of graphene–water nanofluid at below and above ambient temperatures. Int Commun Heat Mass Transf. 2016;70:66–74.  https://doi.org/10.1016/j.icheatmasstransfer.2015.11.002.CrossRefGoogle Scholar
  71. 71.
    Sundar LS, Farooky MH, Sarada SN, Singh MK. Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. Int Commun Heat Mass Transf. 2013;41:41–6.  https://doi.org/10.1016/j.icheatmasstransfer.2012.11.004.CrossRefGoogle Scholar
  72. 72.
    ASHRAE (American Society of Heating Refrigerating and Air-Conditioning Engineers). 2009 Ashrae handbook: fundamentals, I-P Edition. ASHRAE J. (2009).  https://doi.org/10.1039/c1cs15219j.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Najafabad BranchIslamic Azad UniversityNajafabadIran
  2. 2.Mechanical Engineering Department, Unayzah College of EngineeringQassim UniversityQassimSaudi Arabia
  3. 3.Mechanical Engineering Department, College of EngineeringQassim UniversityQassimSaudi Arabia
  4. 4.Laboratory of Magnetism and Magnetic Materials, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  5. 5.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations