Effect of Bi addition on precipitation and dissolution in Cu–9at% In and Cu–5at% Sb alloys

  • M. HachoufEmail author
  • D. Hamana


The effect of Bi addition on precipitation and dissolution, in Cu–9at% In and Cu–5at% Sb supersaturated solid solutions, has been studied by several complementary techniques. Differential Dilatometry and Differential Scanning Calorimetry permit only the analysis of the δ phase dissolution kinetic in sufficiently aged samples. Delayed spheroidization due to Bi segregation around the precipitated lamellae, observed by Transmission Electron Microscopies in the first alloy, gives a residual interfacial energy leading to accelerated δ phase dissolution with decreased activation energy. Kinetics parameters evolution indicates a progressive δ phase continuous dissolution which makes available a small chemical driving force at high temperatures and leads to an increasing activation energy during dissolution. However, Bi dispersed particles in the second alloy haven’t effect on the dissolution but they cause a contraction above 833 K. Kinetics parameters evolution indicates rapid δ phase dissolution that shifted to high temperatures where an important chemical driving force for solution treatment is available. It leads to almost constant activation energy.


Precipitation Segregation Dissolution Calorimetry Kinetics activation energy 



The authors like to express their sincere thanks to Ellen Baken and Anna Carlsson from TEM Applications Laboratory of NanoPort FEI COMPANY (Netherlands) and Guillaume Brunetti, TEM/FIB Application and Marketing Engineer, JEOL (Europe), for assistance with the TEM and SEM analysis.


  1. 1.
    Hamana D, Bouchear M, Derafa A. Effect of plastic deformation on the formation and dissolution of transition phases in Al-12 wt.%. Mg alloy Mater Chem Phys. 1998;57:99–110.CrossRefGoogle Scholar
  2. 2.
    Boumerzoug Z, Boudhib L, Chala A. Influence of plastic deformation on occurrence of discontinuous precipitation. J Mater Sci. 2005;40:3199–203.CrossRefGoogle Scholar
  3. 3.
    Hachouf M, Hamana D. Study of the non-isothermal microstructural evolution of deformed Cu–15 wt.%In and Cu–9 wt.%Sb alloys by means of X-ray diffraction and dilatometry. J Alloys Compd. 2015;622:29–36.CrossRefGoogle Scholar
  4. 4.
    Kashyap KT. Discontinuous precipitation in Cu base alloys. Bull Matter Sci. 2009;32:413–4.CrossRefGoogle Scholar
  5. 5.
    Predel B, Gust W. Die Kinetik der feinlamellaren diskontinuierlichen Ausscheidung in übersättigten Mischkristallen des Systems Cu-In. Mater Sci Eng. 1975;17:41–50.CrossRefGoogle Scholar
  6. 6.
    Mana I, Jha JN, Pabi SK. Kinetics of Discontinuous Precipitation in a Zn-2% at Ag Alloy. Scr Metall Mater. 1993;29:817–22.CrossRefGoogle Scholar
  7. 7.
    Hansen M, Anderko K. Constitution of binary alloys. New York: Mc Graw-Hill; 1958.CrossRefGoogle Scholar
  8. 8.
    Bohm H. On Precipitation Behavior of Binary Cu Alloys and its Influence due to Alloying. Z Metallk. 1961;52:564–71.Google Scholar
  9. 9.
    Solórzano IG, Gust W. Combined Phenomena of Grain Boundary Migration, Precipitation and Recrystallization in Cu-7.5 at% In. Materials Science Forum. 1992;94:659–64.CrossRefGoogle Scholar
  10. 10.
    Hamana D, Nebti S, Boumerzoug Z, Boutefnouchet A. The similarity between continuous and discontinuous precipitation. Phil Mag. 1993;67:1143–51.CrossRefGoogle Scholar
  11. 11.
    Predel B, Gust W. Discontinuous precipitation processes in supersaturated Cu-Sb solid solution. Met. Trans. 1975;A6:1237–44.CrossRefGoogle Scholar
  12. 12.
    Balasubrahmanyam VV, Gupta SP. Kinetics of cellular precipitation and discontinuous coarsening of the cellular precipitate in Cu-Sb alloys. Acta Metall. 1989;37:291–301.CrossRefGoogle Scholar
  13. 13.
    Hamana D, Boumerzoug Z. Discontinuous Precipitation, Coarsening and Dissolution of Phases in Cu-In and Cu-Sb Alloys. A Metallkd. 1994;85:479–86.Google Scholar
  14. 14.
    Boumerzoug Z, Hamana D. Different sites of discontinuous precipitation and mechanisms of dissolution in Cu-9 wt.% Sb alloy. Mater Chem Phys. 2001;69:10-18.Google Scholar
  15. 15.
    Das A, Pabi SK, Manna I. Kinetics of the eutectoid transformation in the Cu–In system. J. Mater. Scien. 1999;34:1815–21.CrossRefGoogle Scholar
  16. 16.
    Gupta SP. Kinetics of discontinuous coarsening of cellular precipitate in a Cu-15 wt% in alloy. Acta Metall. 1986;34:1279–87.CrossRefGoogle Scholar
  17. 17.
    Predel B, Gust W. Explanations of third element effects upon the growth kinetics of discontinuous precipitation in Cu-In and Cu-Sb alloys. Met Trans A. 1976;7A:1958–60.Google Scholar
  18. 18.
    Hamana D, Hachouf M, Boumaza L, Biskri ZE. Precipitation Kinetics and Mechanism in Cu-7 wt% Ag Alloy. Mater Sci Appl. 2011;2:899–910.Google Scholar
  19. 19.
    Hamana D, Hachouf M. Precipitation and dissolution–grains growth effects and kinetics during non-isothermal heating of deformed Cu–7 mass% Ag alloy. Therm Anal Calorim. 2016;123:1063–71.CrossRefGoogle Scholar
  20. 20.
    Massalski DTB, Okamoto H, Subramanian PR, Kacprsak L, editors. Binary Alloy Phase Diagrams, vol. 1472. Metals Park: American Society for Metals; 1990.Google Scholar
  21. 21.
    Abe E. Atomic-Scale Characterization of Nanostructured Metallic Materials by HAADF/Z-contrast STEM. Mater Trans. 2003;44:2035–41.CrossRefGoogle Scholar
  22. 22.
    Aveyard R, Rieger B. Tilt series STEM simulation of a 25×25×25 nm semiconductor with characteristic X-ray emission. Ultramicroscopy. 2016;171:96–103.CrossRefGoogle Scholar
  23. 23.
    Yang WQ, Xu M, Liang JX, Meng Y, Zheng L. Non-equilibrium grain-boundary segregation of Bi in Cu bicrystals. Trans. Nonferrous Met. Soc. China. 2014;24:4038–43.CrossRefGoogle Scholar
  24. 24.
    Alber U, Mullejans H, Ruhle M. Bi segregation at Cu grain boundary. Acta Metall. 1999;47:4047–60.Google Scholar
  25. 25.
    Fournelle RA, Clark JB. The genesis of the cellular precipitation reaction. Met Trans. 1972;3:2757–67.CrossRefGoogle Scholar
  26. 26.
    Powell BD, Mykura H. The segregation of bismuth to grain boundaries in Cu-bismuth alloys. Acta Metall. 1973;21:1151–6.CrossRefGoogle Scholar
  27. 27.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  28. 28.
    Akahira T, Sunose T. Joint convention of four electrical institutes. Res Report Chiba Inst Technol. 1971;16:22–31.Google Scholar
  29. 29.
    Johnson WA, Mehl RF. Reaction kinetics in process of nucleation and growth. Trans. AIME. 1939;135:416–58.Google Scholar
  30. 30.
    Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7(12):1103–12.CrossRefGoogle Scholar
  31. 31.
    Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.CrossRefGoogle Scholar
  32. 32.
    Avrami M. Granulation, Phase Change, and Microstructure kinetics of phase change III. J. Chem. Phys. 1941;9(2):177–84.CrossRefGoogle Scholar
  33. 33.
    Brener EA, Temkin DE. Theory of discontinuous precipitation: Importance of the elastic strain. Acta Mat. 2003;51:797–803.CrossRefGoogle Scholar
  34. 34.
    Kim YM, Kang DS, Hong SK, Kim YC, Kang CS, Choi SW. Influence of variation in the silicon content on the silicon precipitation in the Al–Si binary system. Therm Anal Calorim. 2017;128:107–13.CrossRefGoogle Scholar
  35. 35.
    Papon P, Leblond J, Meijer Paul HE. Physique des transitions de phases. Paris: Dunod; 1999.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Nuclear Research Centre of BirineAin OusseraAlgeria
  2. 2.Research Unit of Materials Sciences and ApplicationsConstantine 1 UniversityConstantineAlgeria

Personalised recommendations