Influence of microwave irradiation on thermal properties of PVA and PVA/graphene nanocomposites

  • Hafiz Muhammad Afzal
  • Farrukh Shehzad
  • Mukarram Zubair
  • Omer Yahya Bakather
  • Mamdouh A. Al-HarthiEmail author


This article discusses the effect of microwave irradiation on the thermal properties of poly(vinyl alcohol)/graphene nanocomposites, prepared using a solution casting technique. Samples were subjected to microwave radiation for 5, 10 and 15 min at a constant power of 200 watts. The crystallinity and thermal stability of the irradiated samples were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis. Reduction in crystallinity and thermal stability of PVA was observed with incorporation of graphene due to restricted dynamic movement of chains and synergistic instability, respectively. Microwave irradiation for 5 min improved the crystallinity and thermal stability of the nanocomposites. However, further irradiation caused a decrease in the crystallinity as well as in the thermal stability due to degradation. Moreover, the isothermal crystallization kinetics were studied by DSC. An increase in the crystallization rate was observed with graphene incorporation.


Poly(vinyl alcohol) Graphene Microwave radiation Nanocomposites Crystallization kinetics Degradation kinetics 



The authors are thankful to the Deanship of Research King Fahd University of Petroleum & Minerals (KFUPM) for supporting this work under fast track project (Project No. FT161010).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10973_2019_8419_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1180 kb)


  1. 1.
    Goodship V. Polyvinyl alcohol: materials, processing and applications (Rapra review reports). Rapra Rev Reports. Shrewsbury Rapra Technology; 2009.Google Scholar
  2. 2.
    Sreekumar PA, Al-Harthi MA, De SK. Reinforcement of starch/polyvinyl alcohol blend using nano-titanium dioxide. J Compos Mater. 2012;46:3181–7.CrossRefGoogle Scholar
  3. 3.
    Sreekumar PA, Al-Harthi MA, De SK. Effect of glycerol on thermal and mechanical properties of polyvinyl alcohol/starch blends. J Appl Polym Sci. 2012;123:135–42.CrossRefGoogle Scholar
  4. 4.
    Zubair M, Jose J, Emwas AH, Al-Harthi MA. Effect of modified graphene and microwave irradiation on the mechanical and thermal properties of poly(styrene-co-methyl methacrylate)/graphene nanocomposites. Surf Interface Anal. 2014;46:630–9.CrossRefGoogle Scholar
  5. 5.
    Sadasivuni KK, Ponnamma D, Kim J, Thomas S. Graphene-based polymer nanocomposites in electronics. Springer; 2015. p. 1–382.
  6. 6.
    Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nanotechnol. 2009;4:217–24.CrossRefGoogle Scholar
  7. 7.
    Jose J, De SK, AlMa’adeed MAA, Bhadra Dakua J, Sreekumar PA, Sougrat R, et al. Compatibilizing role of carbon nanotubes in poly(vinyl alcohol)/starch blend. Starch/Staerke. 2015;67:147–53. Scholar
  8. 8.
    Tjong SC. Thermal properties of polymer nanocomposites. Polymer composites with carbonaceous nanofillers. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2012. p. 103–41.CrossRefGoogle Scholar
  9. 9.
    Erukhimovitch V, Baram J. Crystallization kinetics. Phys Rev B. 1994;50:5854–6. Scholar
  10. 10.
    Lorenzo AT, Arnal ML, Albuerne J, Müller AJ. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test. 2007;26:222–31.CrossRefGoogle Scholar
  11. 11.
    Feng L, Li W, Ren J, Qu X. Electrochemically and DNA-triggered cell release from ferrocene/β-cyclodextrin and aptamer modified dual-functionalized graphene substrate. Nano Res. 2015;8:887–99.CrossRefGoogle Scholar
  12. 12.
    Wu G, Tang Y, Weng R. Dispersion of nano-carbon filled polyimide composites using self-degradated low molecular poly(amic acid) as impurity-free dispersant. Polym Degrad Stab. 2010;95:1449–55.CrossRefGoogle Scholar
  13. 13.
    McIntosh D, Khabashesku VN, Barrera EV. Benzoyl peroxide initiated in situ functionalization, processing, and mechanical properties of single-walled carbon nanotube-polypropylene composite fibers. J Phys Chem C. 2007;111:1592–600.CrossRefGoogle Scholar
  14. 14.
    Tang Y, Hu X, Liu D, Guo D, Zhang J. Effect of microwave treatment of graphite on the electrical conductivity and electrochemical properties of polyaniline/graphene oxide composites. Polymers (Basel). 2016;8:399.CrossRefGoogle Scholar
  15. 15.
    Alsharaeh EH. Polystyrene-poly(methyl methacrylate) silver nanocomposites: Significant modification of the thermal and electrical properties by microwave irradiation. Materials (Basel). 2016;9:458.CrossRefGoogle Scholar
  16. 16.
    Charlesby A. Effect of high-energy radiation on long-chain polymers. Nature. 1953;171:167.CrossRefGoogle Scholar
  17. 17.
    Al-Harthi MA. Influence of applying microwave radiation on the LDPE/MWCNTs nanocomposite. Polym Compos. 2014;35:2036–42.CrossRefGoogle Scholar
  18. 18.
    Alsharaeh EH, Othman AA, Aldosari MA. Microwave irradiation effect on the dispersion and thermal stability of RGO nanosheets within a polystyrene matrix. Materials (Basel). 2014;7:5212–24.CrossRefGoogle Scholar
  19. 19.
    Zubair M, Shehzad F, Al-Harthi MA. Impact of modified graphene and microwave irradiation on thermal stability and degradation mechanism of poly (styrene-co-methyl meth acrylate). Thermochim Acta. 2016;633:48–55.CrossRefGoogle Scholar
  20. 20.
    Zubair M, Jose J, Al-Harthi MA. Evaluation of mechanical and thermal properties of microwave irradiated poly (styrene-co-methyl methacrylate)/graphene nanocomposites. Compos Interfaces. 2015;22:595–610.CrossRefGoogle Scholar
  21. 21.
    Afzal HM, Mitu SSI, Al-Harthi MA. Microwave radiations effect on electrical and mechanical properties of poly(vinyl alcohol) and PVA/graphene nanocomposites. Surf Interfaces. 2018;13:65–78.CrossRefGoogle Scholar
  22. 22.
    Shehzad F, Daud M, Al-Harthi MA. Synthesis, characterization and crystallization kinetics of nanocomposites prepared by in situ polymerization of ethylene and graphene. J Therm Anal Calorim. 2016;123:1501–11.CrossRefGoogle Scholar
  23. 23.
    Papageorgiou GZ, Palani A, Gilliopoulos D, Triantafyllidis KS, Bikiaris DN. Mechanical properties and crystallization of high-density polyethylene composites with mesostructured cellular silica foam. J Therm Anal Calorim. 2013;113:1651–65.CrossRefGoogle Scholar
  24. 24.
    Abdul-Majeed BA, Hussain HK, Al-Sultanee NAK. Effect of annealing on the crystallization of poly vinyl chloride for drug delivery system. Iraqi J Chem Pet Eng. 2012;13:29–36.Google Scholar
  25. 25.
    Johra FT, Lee J-W, Jung W-G. Facile and safe graphene preparation on solution based platform. J Ind Eng Chem. 2014;20:2883–7.CrossRefGoogle Scholar
  26. 26.
    Ahad N, Saion E, Gharibshahi E. Structural, thermal, and electrical properties of Pva-sodium salicylate solid composite polymer electrolyte. J Nanomater. 2012;2012.
  27. 27.
    Mahendia S, Heena, Kandhol G, Deshpande UP, Kumar S. Determination of glass transition temperature of reduced graphene oxide-poly(vinyl alcohol) composites using temperature dependent Fourier transform infrared spectroscopy. J Mol Struct. 2016;1111:46–54. Scholar
  28. 28.
    Jose J, Al-Harthi MA, AlMa’adeed MAA, Dakua JB, De SK. Effect of graphene loading on thermomechanical properties of poly(vinyl alcohol)/starch blend. J Appl Polym Sci. 2015;132:41827.CrossRefGoogle Scholar
  29. 29.
    Medhekar NV, Ramasubramaniam A, Ruoff RS, Shenoy VB. Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano. 2010;4:2300–6.CrossRefGoogle Scholar
  30. 30.
    Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Cuo T, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater. 2009;19:2297–302.CrossRefGoogle Scholar
  31. 31.
    El-Sawy NM, El-Arnaouty MB, Abdel Ghaffar AM. Gamma irradiation effect on the non-crosslinked and crosslinked poly(vinyl alcohol) films. In: Proceedings of 9 international conference nuclear science and applications. Egypt: The Egyptian Society of Nuclear Sciences and Applications (ESNSA) (Egypt); 2008. p. 1239.Google Scholar
  32. 32.
    Gongxu L, Hongying C, Dongyuan L. The degradation in solid state of polyvinyl alcohol by gamma-irradiation. Radiat Phys Chem Pergamon. 1993;42:229–32.CrossRefGoogle Scholar
  33. 33.
    Bhat NV, Nate MM, Kurup MB, Bambole VA, Sabharwal S. Effect of γ-radiation on the structure and morphology of polyvinyl alcohol films. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. 2005;237:585–92.CrossRefGoogle Scholar
  34. 34.
    Zhang SJ, Yu HQ. Radiation-induced degradation of polyvinyl alcohol in aqueous solutions. Water Res. 2004;38:309–16.CrossRefGoogle Scholar
  35. 35.
    Ferrari AC, Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamond-like carbon. Phys Rev B Condens Matter Mater Phys. 2001;64:075414.CrossRefGoogle Scholar
  36. 36.
    Dresselhaus MS, Dresselhaus G, Saito R. Physics of carbon nanotubes. Carbon N Y. 1995;33:883–91.CrossRefGoogle Scholar
  37. 37.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N Y. 2007;45:1558–65.CrossRefGoogle Scholar
  38. 38.
    Sharma SK, Prakash J, Pujari PK. Effects of the molecular level dispersion of graphene oxide on the free volume characteristics of poly(vinyl alcohol) and its impact on the thermal and mechanical properties of their nanocomposites. Phys Chem Chem Phys R Soc Chem. 2015;17:29201–9.CrossRefGoogle Scholar
  39. 39.
    Thayumanavan N, Tambe P, Joshi G, Shukla M. Effect of sodium alginate modification of graphene (by anion- π type of interaction) on the mechanical and thermal properties of polyvinyl alcohol (PVA) nanocomposites. Compos Interfaces. 2014;21:487–506.CrossRefGoogle Scholar
  40. 40.
    Torikai A, Geetha R, Nagaya S, Fueki K. Radiation-induced degradation of polyethylene: role of amorphous region in the formation of oxygenated products and the mechanical properties. Polym Degrad Stab. 1986;16:199–212.CrossRefGoogle Scholar
  41. 41.
    Mishra S, Bajpai R, Katare R, Bajpai AK. Radiation induced crosslinking effect on semi-interpenetrating polymer networks of poly(vinyl alcohol). Express Polym Lett. 2007;1:407–15.CrossRefGoogle Scholar
  42. 42.
    Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7:1103.CrossRefGoogle Scholar
  43. 43.
    Lee S, Hong J-Y, Jang J. The effect of graphene nanofiller on the crystallization behavior and mechanical properties of poly(vinyl alcohol). Polym Int. 2013;62:901–8.CrossRefGoogle Scholar
  44. 44.
    Oral E, Godleski-Beckos C, Ghali BW, Lozynsky AJ, Muratoglu OK. Effect of cross-link density on the high pressure crystallization of UHMWPE. J Biomed Mater Res Part B Appl Biomater. 2009;90 B:720–9.CrossRefGoogle Scholar
  45. 45.
    Saroj AL, Chaurasia SK, Kataria S, Singh RK. Isothermal and non-isothermal crystallization kinetics of PVA + ionic liquid [BDMIM][BF 4]-based polymeric films. Phase Transit. 2016;89:578–97.CrossRefGoogle Scholar
  46. 46.
    Trujillo M, Arnal ML, Müller AJ, Laredo E, Bredeau S, Bonduel D, et al. Thermal and morphological characterization of nanocomposites prepared by in situ polymerization of high-density polyethylene on carbon nanotubes. Macromolecules. 2007;40:6268–76.CrossRefGoogle Scholar
  47. 47.
    Fillon B, Lotz B, Thierry A, Wittmann JC. Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci Part B Polym Phys. 1993;31:1395–405.CrossRefGoogle Scholar
  48. 48.
    Xin S, Li Y, Zhao H, Bian Y, Li W, Han C, et al. Confinement crystallization of poly(l-lactide) induced by multiwalled carbon nanotubes and graphene nanosheets. J Therm Anal Calorim. 2015;122:379–91. Scholar
  49. 49.
    Yang H, Xu S, Jiang L, Dan Y. Thermal decomposition behavior of poly(vinyl alcohol) with different hydroxyl content. J Macromol Sci Part B Phys. 2012;51:464–80.CrossRefGoogle Scholar
  50. 50.
    Holland BJ, Hay JN. The thermal degradation of poly(vinyl alcohol). Polymer. 2001;42:6775–83.CrossRefGoogle Scholar
  51. 51.
    Barroso-Bujans F, Alegría A, Pomposo JA, Colmenero J. Thermal stability of polymers confined in graphite oxide. Macromolecules. 2013;46:1890–8.CrossRefGoogle Scholar
  52. 52.
    Gao W, Alemany LB, Ci L, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nat Chem. 2009;1:403–8.CrossRefGoogle Scholar
  53. 53.
    Thomas PS, Guerbois J, Russell GF, Briscoe BJ. Ftir study of the thermal degradation of poly(vinyl alcohol). J Therm Anal Calorim. 2007;64:501–8.CrossRefGoogle Scholar
  54. 54.
    Olad A. Polymer/clay nanocomposites. In: Nalwa HS, editor. Encyclopedia of nanoscience and nanotechnology, vol. 8. Washington: American Scientific Publishers; 1996. p. 58883.Google Scholar
  55. 55.
    Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer (Guildf). 2008;49:3187–204.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Department of Environmental Engineering, College of EngineeringImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  3. 3.Department of Chemical EngineeringJazan UniversityJazanSaudi Arabia
  4. 4.Center of Research Excellence in NanotechnologyKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations