Advertisement

Thermal hazard analysis of a biomass pretreatment process using ionic liquids

  • Nana Yamaki
  • Kento Shiota
  • Yu-ichiro Izato
  • Dang Kim Hoang
  • Atsumi MiyakeEmail author
Article
  • 5 Downloads

Abstract

Ionic liquids (ILs) may have various applications as less hazardous solvents because of their thermal stabilities and low vapor pressures. However, it is challenging to remove heat from large amount because of IL’s high viscosity and low vapor pressure when cooling failure or abnormal reaction occurs. Because chemical processes using ILs on an industrial scale are still in the early phase of development, it is important to assess the associated thermal hazards of chemical process using ILs. This work proposes a systematic approach of analyzing thermal hazards of chemical process using ILs, based on the approach proposed by Stoessel and analyze the cellulose dissolution process using ILs containing impurities as a test case. Copper oxide, which might be contaminated from wood chips, was chosen as a model impurity. To analyze the thermal hazards of cellulose dissolution process using ILs, thermal analysis using small-scale reaction calorimeter, differential scanning calorimeter and thermogravimetry–differential thermal analysis–mass spectrometry were performed. From these results, reaction heat and heat value of ILs and its mixture were low, while CuO lowers the decomposition temperature of ILs and produces flammable gases. From these trials, exothermal reaction was not observed, while flammable gaseous products might be produced in vapor phase in the reactor.

Keywords

Ionic liquids Thermal hazard analysis Cellulose dissolution Process safety 

Notes

References

  1. 1.
    Martyn JE, Kenneth RS. Ionic liquids. Green solvents for the future. Pure Appl Chem. 2000;72:1391–8.CrossRefGoogle Scholar
  2. 2.
    Natalia VP, Kenneth RS. Applications of ionic liquids in the chemical industry. Chem Soc Rev. 2008;37:123–50.CrossRefGoogle Scholar
  3. 3.
    Hélène OB, Lionel M, Didier M. Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A. 2010;373:1–56.CrossRefGoogle Scholar
  4. 4.
    Ranke J, Mölter K, Stock F, Bottin WU, Poczobutt J, Hoffmann J, Ondruschka B, Filser J, Jastorff B. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol Environ Saf. 2004;58:396–404.CrossRefGoogle Scholar
  5. 5.
    Md AS, Bawadi A, Anita RIMM. Structural feature based computational approach of toxicity prediction of ionic liquids: cationic and anionic effects on ionic liquids toxicity. J Mol Liq. 2016;224:393–400.CrossRefGoogle Scholar
  6. 6.
    Muhammad IK, Dzulkarnain Z, Azmi MS, Muhammad M. Framework for ecotoxicological risk assessment of ionic liquids. Pocedia Eng. 2016;148:1141–8.CrossRefGoogle Scholar
  7. 7.
    Domínduez CM, Munoz M, Quintanilla A, Pedro ZM, VentuRodrigura SPM, Coutinho JAP, Casas JA, Rodriguez JJ. Degradation of imidazolium-based ionic liquids in aqueous solution by Fenton oxidation. J Chem Technol Biotechnol. 2014;89:1197–202.CrossRefGoogle Scholar
  8. 8.
    Pieczynska A, Ofiarska A, Borzyszkowska FA, Bielinska BA, Stepnowski P, Stolte S, Siedlecka ME. A comparative study of electrochemical degradation of imidazolium and pyridinium ionic liquids: a reaction pathway and ecotoxicity evaluation. Sep Purif Technol. 2015;156:522–34.CrossRefGoogle Scholar
  9. 9.
    Ray CC, Vega FL. Transport properties of the ionic liquid 1-ethyl-3-methylimidazolium chloride from equilibrium molecular dynamics simulation. The effect of temperature. J Phys Chem B. 2006;110:14426–35.CrossRefGoogle Scholar
  10. 10.
    Ghatee HM, Zare M, Zolghadr RA, Moosavi F. Temperature dependence of viscosity and relation with the surface tension of ionic liquids. Fluid Phase Equilib. 2010;291:188–94.CrossRefGoogle Scholar
  11. 11.
    Wen-quan F, Yi-heng L, Yeng C, Yu-wei L, Tao Y. Thermal stability of imidazolium-based ionic liquids investigated by TG and FTIR techniques. J Therm Anal Calorim. 2016;125:143–54.CrossRefGoogle Scholar
  12. 12.
    Yan H, Jing P, Shaowen H, Jiuqiang L, Maolin Z. Thermal decomposition of allyl-imidazolium-based ionic liquid studied by TGA–MS analysis and DFT calculations. Thermochim Acta. 2010;501:78–83.CrossRefGoogle Scholar
  13. 13.
    Fox MD, Gilman WJ, De Long CH, Trulove CP. TGA decomposition kinetics of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate and the thermal effects of contaminants. J Chem Thermodyn. 2005;37:900–5.CrossRefGoogle Scholar
  14. 14.
    Seyedhosseini B, Izadyar M, Housaindokht RM. Thermal decomposition mechanisms of the ionic liquids based on α-amino acid anion and N7, N9-dimethyladeninium cation: quantum chemistry approach. J Mol Liq. 2015;209:779–84.CrossRefGoogle Scholar
  15. 15.
    Ngo LH, LeCompte K, Hargens L, McEwen BA. Thermal properties of imidazolium ionic liquids. Thermochim Actta. 2000;357–8:97–102.CrossRefGoogle Scholar
  16. 16.
    Kosmulski M, Gustafsson J, Rosenholm BJ. Thermal stability of low temperature ionic liquids revisited. Thermochim Acta. 2004;412:47–53.CrossRefGoogle Scholar
  17. 17.
    Ohtani H, Ishimura S, Kumai M. Thermal decomposition behaviors of imidazolium-type ionic liquids studied by pyrolysis-gas chromatography. Anal Sci. 2013;24:1335–40.CrossRefGoogle Scholar
  18. 18.
    Efimova A, Hubrig G, Schmidt P. Thermal stability and crystallization behavior of imidazolium halide ionic liquids. Thermochim Acta. 2013;573:162–9.CrossRefGoogle Scholar
  19. 19.
    Smiglak M, Reichert MW, Holbrey DJ, Wilkes SJ, Sun L, Thrasher SJ, Kirichenko K, Singh S, Katritzky RA, Rogers DR. Combustible ionic liquids by design: is laboratory safety another ionic liquid myth? Chem Commun. 2006;24:2554–6.CrossRefGoogle Scholar
  20. 20.
    Bonita D, Yeojin J, Kyungjung K. Comparative study of corrosion behavior of metals in protic and aprotic ionic liquids. Electrochem Commun. 2016;73:20–3.CrossRefGoogle Scholar
  21. 21.
    Horng-Jang L, Shih-Kai H, Hao-Ying C, Sheng-Nan L. Reason for Ionic Liquids to be Combustible. Procedia Eng. 2012;45:502–6.CrossRefGoogle Scholar
  22. 22.
    Pei-Chiung L, I-Wen S, Jeng-Kuei C, Chung-Jui S, Jing-Chie L. Corrosion characteristics of nickel, copper, and stainless steel in a Lewis neutral chloroaluminate ionic liquid. Corros Sci. 2011;53:4318–23.CrossRefGoogle Scholar
  23. 23.
    Wendler F, Todi NL, Meister F. Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochim Acta. 2012;528:76–84.CrossRefGoogle Scholar
  24. 24.
    Yamaki N, Shiota K, Izato Y, Miyake A. Analysis of the thermal hazards of 1-butyl-3-methylimidazolium chloride mixtures with cellulose and various metals. J Therm Anal Calorim. 2018;133:797–803.CrossRefGoogle Scholar
  25. 25.
    Yamamoto Y, Miyake A. Influence of a mixed solvent containing ionic liquids on the thermal hazard of the cellulose dissolution process. J Therm Anal Calorim. 2017;127:743–8.CrossRefGoogle Scholar
  26. 26.
    Stoessel F. Planning protection measures against runaway reactions using criticality classes. Process Saf Environ Prot. 2009;87:105–12.CrossRefGoogle Scholar
  27. 27.
    Stoessel F, Fierz H, Lerena P, Killé G. Recent developments in the assessment of thermal risks of chemical processes. Org Process Res Dev. 1997;1:428–34.CrossRefGoogle Scholar
  28. 28.
    Jiang J, Jiang J, Pan Y, Wang R, Tang P. Investigation on thermal runaway in batch reactors by parametric sensitivity analysis. Chem Eng Technol. 2011;34:1521–8.CrossRefGoogle Scholar
  29. 29.
    Westerterp RK, Molga JE. Safety and runaway prevention in batch and semibatch reactors—a review. Chem Eng Res Des. 2006;84:543–52.CrossRefGoogle Scholar
  30. 30.
    Gygax R. Chemical reaction engineering for safety. Chem Eng Sci. 1988;43:1759–71.CrossRefGoogle Scholar
  31. 31.
    Lopes CMA, João GK, Morais CRA, Bogel-Łukasik E, Bogel-Łukasik R. Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustanable Chem Engineering. 2013;1:1–31.CrossRefGoogle Scholar
  32. 32.
    Chaturved V, Verma P. An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. J Biotech. 2013;3:415–31.Google Scholar
  33. 33.
    Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J. Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J. 2009;147:13–21.CrossRefGoogle Scholar
  34. 34.
    Swatloski PR, Spear KS, Holbrey DJ, Rogers DR. Dissolution of cellose with ionic liquids. J Am Chem Soc. 2002;124:4974–5.CrossRefGoogle Scholar
  35. 35.
    Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J. Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends. Mater Chem Front. 2017;1:1273–90.CrossRefGoogle Scholar
  36. 36.
    Sun N, Rahman M, Qin Y, Maxim LM, Rodrıguez H, Rogers DR. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 2009;11:646–55.CrossRefGoogle Scholar
  37. 37.
    Kim H, Ahn Y, Kwak S. Comparing the influence of acetate and chloride anions on the structure of ionic liquid pretreated lignocellulosic biomass. Biomass Bioenergy. 2016;93:243–53.CrossRefGoogle Scholar
  38. 38.
    Farahani VS, Kim Y, Schall AC. A coupled low temperature oxidative and ionic liquid pretreatment of lignocellulosic biomass. Catal Today. 2016;269:2–8.CrossRefGoogle Scholar
  39. 39.
    Miyake A, Morioka K. Influence of metal oxides on the thermal ignition behaviour of woody biomass cellulose. Sci Technol Energ Mater. 2011;72:123–6.Google Scholar
  40. 40.
    Nakayama J, Miyake A. Catalytic effect of copper(II) oxide on oxidation of cellulosic biomass. J Therm Anal Calorim. 2012;110:321–7.CrossRefGoogle Scholar
  41. 41.
    Nakayama J, Miayke A. Thermal and evolved gas analyses of the oxidation of a cellulose/copper(II) oxide mixture. J Therm Anal Calorim. 2013;113:1403–8.CrossRefGoogle Scholar
  42. 42.
    Li C, Tamjore DH, Wei Wong J, Gardner LJ, Sale LK, Simmons AB, Singh S. Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchglass. Biotechnol Buofuel. 2013.  https://doi.org/10.1186/175468346154.Google Scholar
  43. 43.
    Varanasi P, Singh P, Auer M, Adams DP, Simmons AB, Singh S. Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment. Biotechnol Biofuels. 2013;6:14.CrossRefGoogle Scholar
  44. 44.
    Kosan B, Michel C, Meister F. Dissolution and forming of cellulose with ionic liquids. Cellulose. 2008;15:59–66.CrossRefGoogle Scholar
  45. 45.
    Zakrzewska EM, Bogel-Łukasik E, Bogel-Łukasik R. Solubility of carbohydrates in ionic liquids. Energy Fuels. 2010;24:737–45.CrossRefGoogle Scholar
  46. 46.
    Ma X, Li L, Wei J, Duan W, Guan W, Yang J. Study on enthalpy and molar heat capacity of solution for the ionic liquid [C2mim][OAc] (1-Ethyl-3-methylimidazolium acetate). J Chem Eng Data. 2012;57:3171–5.CrossRefGoogle Scholar
  47. 47.
    Hatakeyama T, Nakamura K, Hatakeyama H. Studies on heat capacity of cellulose and lignin by differential scanning calorimetry. Polymer. 1982;23:1801–4.CrossRefGoogle Scholar
  48. 48.
    Clough MT, Geyer K, Hunt AP, Mertes J, Welton T. Thermal decomposition of carboxylate ionic liquids: trends and mechanisms. Phys Chem Chem Phys. 2013;15:20480–95.CrossRefGoogle Scholar
  49. 49.
    Plechkova VN, Seddoon RK. Applications of ionic liquids in the chemical industry. Chem Soc Rev. 2008;37:123–50.CrossRefGoogle Scholar
  50. 50.
    Seddon RK, Stark A, Torres JM. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem. 2000;72:2275–87.CrossRefGoogle Scholar
  51. 51.
    “Mass Spectra” by NIST Mass Spectrometry Data Center, William E. Wallace, director” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899,  https://doi.org/10.18434/T4D303, Accessed April 28, 2019.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Nana Yamaki
    • 1
  • Kento Shiota
    • 2
  • Yu-ichiro Izato
    • 1
    • 2
  • Dang Kim Hoang
    • 3
  • Atsumi Miyake
    • 1
    • 2
    Email author
  1. 1.Graduate School of Environment and Information SciencesYokohama National UniversityYokohamaJapan
  2. 2.Institute of Advanced Sciences, Yokohama National UniversityYokohamaJapan
  3. 3.Faculty of Chemical EngineeringThe University of Danang, University of Science and TechnologyDanangVietnam

Personalised recommendations