Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 3, pp 2005–2013 | Cite as

The influence of reagents ball milling on the lithium ferrite formation

  • Elena N. LysenkoEmail author
  • Evgeniy V. Nikolaev
  • Anatoliy P. Surzhikov
  • Svetlana A. Nikolaeva
  • Inna V. Plotnikova


In this work, the effect of ball milling of Li2CO3 and Fe2O3 reagents on the Li0.5Fe2.5O4 ferrite formation was studied by thermogravimetric and differential scanning calorimetric measurements using non-isothermal heating and cooling modes. In the latter case, the analysis was carried out with a magnetic field applied in order to estimate the Curie temperature of the synthesized ferrite. The mechanical milling of both individual Li2CO3/Fe2O3 reagents and their mixture was performed with an AGO-2C planetary mill using steel vials and balls. Samples with different bulk densities, which were compacted from non-milled and milled powders by pressing with different compaction pressures, were investigated. The results showed that the mechanical milling of powder reagents separately does not cause a significant change in the reactivity of the ferrite system. Only milling of the Li2CO3/Fe2O3 mixture makes it possible not only to increase the reactivity of powders, but also to exclude additional compaction of samples before synthesis.


Lithium ferrite Li0.5Fe2.5O4 Ball milling Mechanical activation Thermal analysis 



This work was supported by The Ministry of Science and Higher Education of the Russian Federation in part of the Science program (Project 11.980.2017/4.6). The experiments on equipments and participation in scientific conference were funded from Tomsk Polytechnic University Competitiveness Enhancement Program grant.


  1. 1.
    Smit J, Wijn HPJ. Ferrites, physical properties of ferrimagnetic oxides in relation to their technical applications. Amsterdam: Eindhoven: Philips Technical Library; 1959. p. 299.Google Scholar
  2. 2.
    White GO, Patton CE. Magnetic properties of lithium ferrite microwave materials. Magn Magn Mater. 1978;9:299–317.CrossRefGoogle Scholar
  3. 3.
    Baba PD, Argentina GM, Courtney WE, Dionne GF, Temme DH. Fabrication and properties of microwave lithium ferrites. IEEE Trans Magn. 1972;8:83–94.CrossRefGoogle Scholar
  4. 4.
    Thakur P, Sharma P, Mattei JL, Queffelec P, Truhanov AV, Trukhanov SV, Panina LV, Thakur A. Influence of cobalt substitution on structural, optical, electrical and magnetic properties of nanosized lithium ferrite. J Mater Sci Mater Electron. 2018;29:16507–15.CrossRefGoogle Scholar
  5. 5.
    Nazir MA, Ul-Islam M, Ali I, Ali H, Ahmad B, Ramay SM, Nadeem R, Ehsan MF, Ashiq MN. Structural, electrical and dielectric properties of multiferroic-spinel ferrite composites. J Electron Mater. 2016;45:1065–72.CrossRefGoogle Scholar
  6. 6.
    Dipti KP, Juneja JK, Singh S, Raina KK, Prakash C. Improved dielectric and magnetic properties in modified lithium–ferrites. Ceram Int. 2015;41:3293–7.CrossRefGoogle Scholar
  7. 7.
    Verma V, Pandey V, Aloysius RP, Annapoorni S, Kotanala RK. Comparative study of structural and magnetic properties of nanocrystalline Li0.5Fe2.5O4 prepared by various methods. Phys B. 2009;404:2309–14.CrossRefGoogle Scholar
  8. 8.
    Hrešĉak J, Maliĉ B, Cilenšek J, Benĉan A. Solid-state synthesis of undoped and Sr-doped K0.5Na0.5NbO3. J Therm Anal Calorim. 2017;127:129–36.CrossRefGoogle Scholar
  9. 9.
    Teixeira SS, Graça MPF, Costa LC. Dielectric, morphological and structural properties of lithium ferrite powders prepared by solid state method. J Non Cryst Solids. 2012;358:1924–9.CrossRefGoogle Scholar
  10. 10.
    Cook W, Manley M. Raman characterization of α- and β-LiFe5O8 prepared through a solid–state reaction pathway. J Solid State Chem. 2010;183:322–6.CrossRefGoogle Scholar
  11. 11.
    Boldyrev VV. Mechanochemistry and mechanical activation of solids. Russ Chem Rev. 2006;75:177–89.CrossRefGoogle Scholar
  12. 12.
    Surzhikov AP, Pritulov AM, Lysenko EN, Vlasov VA, Vasendina EA, Malyshev AV. Analysis of the phase composition and homogeneity of ferrite lithium-substituted powders by the thermomagnetometry method. J Therm Anal Calorim. 2013;112:739–45.CrossRefGoogle Scholar
  13. 13.
    Edelio B, le Mercier T, Quarton M. Microstructure and physicochemical studies of pure and zinc-substituted lithium ferrites sintered above 1000 °C. J Am Ceram Soc. 1995;78:365–8.CrossRefGoogle Scholar
  14. 14.
    Berbenni V, Bruni G, Milanese C, Girella A, Marini A. Synthesis and characterization of LaFeO3 powders prepared by a mixed mechanical/thermal processing route. J Therm Anal Calorim. 2018;133:413–9.CrossRefGoogle Scholar
  15. 15.
    Mazen SA, Abu-Elsaad NI. Structural, magnetic and electrical properties of the lithium ferrite obtained by ball milling and heat treatment. Appl Nanosci. 2015;5:105–14.CrossRefGoogle Scholar
  16. 16.
    Giri AK. Nanocrystalline materials prepared through crystallization by ball milling. Adv Mater. 1997;9:163–6.CrossRefGoogle Scholar
  17. 17.
    Berbenni V, Milanese C, Bruni G, Marini A, Pallecchi I. Synthesis and magnetic properties of ZnFe2O4 obtained by mechanochemically assisted low-temperature annealing of mixtures of Zn and Fe oxalates. Thermochim Acta. 2006;447:184–9.CrossRefGoogle Scholar
  18. 18.
    Lysenko EN, Surzhikov AP, Nikolaev EV, Vlasov VA. Thermal analysis study of LiFeO2 formation from Li2CO3–Fe2O3 mechanically activated reagents. J Therm Anal Calorim. 2018;134:81–7.CrossRefGoogle Scholar
  19. 19.
    Widatallah HM, Johnson C, Berry FJ. The influence of ball milling and subsequent calcination on the formation of LiFeO2. J Mater Sci. 2002;37:4621–5.CrossRefGoogle Scholar
  20. 20.
    Berbenni V, Marini A, Matteazzi P, Ricceri R, Welham NJ. Solid-state formation of lithium ferrites from mechanically activated Li2CO3–Fe2O3 mixtures. J Eur Ceram Soc. 2003;23:527–36.CrossRefGoogle Scholar
  21. 21.
    Kavanlooee M, Hashemi B, Maleki-Ghaleh H, Kavanlooee J. Effect of annealing on phase evolution, microstructure, and magnetic properties of nanocrystalline ball-milled LiZnTi ferrite. J Electron Mater. 2012;41:3082–6.CrossRefGoogle Scholar
  22. 22.
    Lysenko EN, Surzhikov AP, Vlasov VA, Malyshev AV, Nikolaev EV. Thermal analysis study of solid-phase synthesis of zinc- and titanium-substituted lithium ferrites from mechanically activated reagents. J Therm Anal Calorim. 2015;122:1347–53.CrossRefGoogle Scholar
  23. 23.
    Surzhikov AP, Lysenko EN, Vlasov VA, Nikolaev EV. Microstructure and reactivity of Fe2O3–Li2CO3–ZnO ferrite system ball-milled in a planetary mill. Thermochim Acta. 2018;664:100–7.CrossRefGoogle Scholar
  24. 24.
    Lin DM, Wang HS, Lin ML, Lin MH, Wu YC. TG(M) and DTG(M) techniques and some of their applications on material study. J Therm Anal Calorim. 1999;58:347–53.CrossRefGoogle Scholar
  25. 25.
    Gallagher PK. Thermomagnetometry. J Therm Anal Calorim. 1997;49:33–44.CrossRefGoogle Scholar
  26. 26.
    Sanders JP, Gallagher PK. Kinetics of the oxidation of magnetite using simultaneous TG/DSC. J Therm Anal Calorim. 2003;72:777–89.CrossRefGoogle Scholar
  27. 27.
    Grigorie AC, Muntean C, Stefanescu M. Obtaining of γ-Fe2O3 nanoparticles by thermal decomposition of polyethyleneglycol–iron nitrate mixtures. Thermochim Acta. 2015;621:61–7.CrossRefGoogle Scholar
  28. 28.
    Surzhikov AP, Frangulyan TS, Ghyngazov SA, Lysenko EN. Investigation of structural states and oxidation processes in Li0.5Fe2.5O4−δ using TG analysis. J Therm Anal Calorim. 2012;108:1207–12.CrossRefGoogle Scholar
  29. 29.
    Brown ME, Dollimore D, Gallway AK. Reaction in solid state. Comprehensive chemical kinetics. Amsterdam: Elsevier Scientific Publishing Co.; 1980.Google Scholar
  30. 30.
    Sharma P, Uniyal P. Investigating thermal and kinetic parameters of lithium titanate formation by solid-state method. J Therm Anal Calorim. 2017;128:875–82.CrossRefGoogle Scholar
  31. 31.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry Application to a phenolic plastic. J Polym Sci Part C. 1964;6:183–95.CrossRefGoogle Scholar
  32. 32.
    Opfermann J. Kinetic analysis using multivariate non-linear regression. J Therm Anal Calorim. 2000;60:641–58.CrossRefGoogle Scholar
  33. 33.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  34. 34.
    Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations