Low-temperature heat capacity and standard thermodynamic functions of 1-hexyl-3-methyl imidazolium perrhenate ionic liquid

  • Da-Wei Fang
  • Kun-Hao Liang
  • Xiao-Hong Hu
  • Xiu-Ting Fan
  • Jie WeiEmail author


Heat capacity for 1-hexyl-3-methyl imidazolium perrhenate ionic liquid [C6MIM][ReO4] in the temperature range from 79 to 396 K has been measured by a fully automated adiabatic calorimeter. For [C6MIM][ReO4], glass transition temperature, the melting temperature, standard molar heat capacity, enthalpy and entropy of solid–liquid phase transition were determined to be (202.164 ± 0.405) K, (226.198 ± 0.265) K, (480.702 ± 0.013) J K−1 mol−1, (15.665 ± 0.195) kJ mol−1 and (69.250 ± 0.780) J K−1 mol−1, respectively. In addition, the thermodynamic characteristics and solid–liquid phase change behavior of [C6MIM][ReO4] were compared with the ones of [C7MIM][ReO4] reported in the literature. The thermodynamic functions (HT H298.15), (ST S298.15) and (GT G298.15), for the compound in the experimental temperature range were calculated.


Perrhenate Thermodynamic functions Heat capacity Adiabatic calorimeter Ionic liquids 



This project was financially supported by National Nature Science Foundation of China NSFC (Nos. 21673107 and 21703090) and Liaoning BaiQianWan Talents Program (2017).

Supplementary material

10973_2019_8312_MOESM1_ESM.docx (120 kb)
Supplementary material 1 (DOCX 119 kb)


  1. 1.
    Fang DW, Zuo JT, Xia MC, Tong J, Li J. Low-temperature heat capacities and the thermodynamic functions of ionic liquids 1-heptyl-3-methyl imidazolium perrhenate. J Therm Anal Calorim. 2018;132:2003–8.CrossRefGoogle Scholar
  2. 2.
    Yamamuro O, Minamimoto Y, Inamura Y, Hayashi S, Hamaguchi H. Heat capacity and glass transition of an ionic liquid 1-butyl-3-methylimidazolium chloride. Chem Phys Lett. 2006;423:371–5.CrossRefGoogle Scholar
  3. 3.
    Strechan AA, Paulechka YU, Blokhin AV, Kabo GJ. Low-temperature heat capacity of hydrophilic ionic liquids [BMIM][CF3COO] and [BMIM][CH3COO] and a correlation scheme for estimation of heat capacity of ionic liquids. J Chem Thermodyn. 2008;40:632–9.CrossRefGoogle Scholar
  4. 4.
    Shimizu Y, Ohte Y, Yamamura Y, Saito K, Atake T. Low-temperature heat capacity of room-temperature ionic liquid, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Phys Chem B. 2006;110:13970–5.CrossRefGoogle Scholar
  5. 5.
    Yauheni UP, Andrey GK, Andrey VB. Calorimetric determination of the enthalpy of 1-butyl-3-methylimidazolium bromide synthesis: a key quantity in thermodynamics of ionic liquids. J Phys Chem B. 2009;113:14742–6.CrossRefGoogle Scholar
  6. 6.
    Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc. 2005;127:2398–9.CrossRefGoogle Scholar
  7. 7.
    Fang DW, Tong J, Guan W, Wang H, Yang JZ. Prediction of the thermodynamic properties of 1-alkyl-3-methylimidazolium lactate ionic liquids [Cnmim][Lact] (n = 2, 3, 4, 5, and 6) by parachor. Sci China Chem. 2010;53:2564–70.CrossRefGoogle Scholar
  8. 8.
    Paulechka YU, Kohut SV, Blokhin AV, Kabo GJ. Thermodynamic properties of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid in the condensed state. Thermochim Acta. 2010;511:119–23.CrossRefGoogle Scholar
  9. 9.
    Wasserscheid P, Boemanna A, Bolm C. Synthesis and performance of ionic liquids determined from the “chiral pool”. Chem Commun. 2002;3:200–1.CrossRefGoogle Scholar
  10. 10.
    Baudequin C, Bregeon D, Levillain J. Chiral ionic liquids, a renewal for the chemistry of chiral solvents? Design, synthesis and applications for chiral recognition and asymmetric synthesis. Tetrahedron Asymmetry. 2005;16:3921–45.CrossRefGoogle Scholar
  11. 11.
    Ma CC, Shi Q, Woodfield BF, Navrotsky A. Low temperature heat capacity of bulk and nanophase ZnO and Zn1−xCoxO wurtzite phases. J Chem Thermodyn. 2013;60:191–6.CrossRefGoogle Scholar
  12. 12.
    Paulechka E, Blokhin AV, Rodrigues ASMC, Rocha MAA, Santos LMNBF. Thermodynamics of long-chain 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquids. J Chem Thermodyn. 2016;97:331–40.CrossRefGoogle Scholar
  13. 13.
    Paulechka YU, Kabo GJ, Blokhin AV, Shaplov AS, Lozinskaya EI, Vygodskii YS. Thermodynamic properties of 1-alkyl-3-methylimidazolium bromide ionic liquids. J Chem Thermodyn. 2007;39:158–66.CrossRefGoogle Scholar
  14. 14.
    Paulechka YU, Blokhin AV, Kabo GJ. Evaluation of thermodynamic properties for non-crystallizable ionic liquids. Thermochim Acta. 2015;604:122–8.CrossRefGoogle Scholar
  15. 15.
    Fang DW, Wang H, Yue S. Physicochemical properties of air and water stable rhenium ionic liquids. J Phys Chem B. 2012;116:2513–9.CrossRefGoogle Scholar
  16. 16.
    Tong B, Liu QS, Tan ZC, Urs WB. Thermochemistry of alkyl pyridinium bromide ionic liquids: calorimetric measurements and calculations. J Phys Chem A. 2010;114:3782–7.CrossRefGoogle Scholar
  17. 17.
    Tan ZC, Di YY. Review of modern low-temperature adiabatic calorimetry. Prog Chem. 2006;18:1234 (in Chinese).Google Scholar
  18. 18.
    Tan ZC, Shi Q, Liu BP, Zhang HT. A fully automated adiabatic calorimeter for heat capacity measurement between 80 to 400 K. J Therm Anal Calorim. 2008;92:367–74.CrossRefGoogle Scholar
  19. 19.
    Tan ZC, Sun LX, Meng SH, Li L, Zhang JB. Heat capacities and thermodynamic functions of p-chlorobenzoic acid. Chem J Chin Univ. 2002;34:1417 (in Chinese).Google Scholar
  20. 20.
    Tan ZC, Sun GY, Song YJ, Wang L, Han JR, Wang M. An adiabatic calorimeter for heat capacity measurement of small samples-the heat capacity of nonlinear optical materials KTiOPO4 and RbTiOAsO4 crystals. Thermochim Acta. 2000;247:252–3.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Da-Wei Fang
    • 1
  • Kun-Hao Liang
    • 1
  • Xiao-Hong Hu
    • 1
  • Xiu-Ting Fan
    • 1
  • Jie Wei
    • 1
    Email author
  1. 1.Institute of Rare and Scattered Elements, College of ChemistryLiaoning UniversityShenyangPeople’s Republic of China

Personalised recommendations