Advertisement

Adrenaline system: another rare case of conglomerate with partial solid solutions

  • Veronica Ianno’
  • Philippe Négrier
  • Philippe EspeauEmail author
Article
  • 11 Downloads

Abstract

Adrenaline, in its enantiomeric form l-, is the drug of choice for the treatment of cardiac arrest or certain serious shock conditions. However, although its crystal structure is known, there are no thermodynamic data on this molecule. Regarding the racemic form of this molecule, the latter has never been characterized either from a thermodynamic or crystallographic point of view. The melting characteristics, temperature and enthalpy of both the enantiomer and the racemate of adrenaline were determined using the plateau values obtained at high DSC scan rates. The refinement of the RX diffraction pattern of the racemate revealed that this equimolar mixture was a conglomerate with partial solid solutions. This conclusion was supported by the phase diagram between the two enantiomers established from the l-enantiomer and the racemate where the results presented in this paper show that a lower solid-state miscibility exists between the two enantiomers. The equimolar compound is therefore part of the very limited series of conglomerate with partial miscibility.

Graphical abstract

Keywords

Adrenaline Binary phase diagram Conglomerate Solid solution Thermal analysis X-ray powder diffraction 

Notes

Acknowledgements

The authors thank Ms. K. Debbasch for her advice and language improvements on the manuscript.

Author’s contribution

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

References

  1. 1.
    Andersen AM. Structural studies of metabolic products of dopamine. III. Crystal and molecular structure of (−)-adrenaline. Acta Chem Scand. 1975;B29:239–44.CrossRefGoogle Scholar
  2. 2.
    Bannach G, Cervini P, Gomes Cavalheiro ET, Ionashiro M. Using thermal and spectroscopic data to investigate the thermal behavior of epinephrine. Thermochim Acta. 2010;499:123–7.CrossRefGoogle Scholar
  3. 3.
    Mitchell CR, Bao Y, Benz NJ, Zhang S. Comparison of the sensitivity of evaporative universal detectors and LC/MS in the HILIC and the reversed-phase HPLC modes. J Chromatogr B. 2009;877:4133–9.CrossRefGoogle Scholar
  4. 4.
    Corvis Y, Menet MC, Négrier P, Espeau P. The role of stearic acid in ascorbic acid protection from degradation: heterogeneous system for homogeneous thermodynamic data. New J Chem. 2013;37:761–8.CrossRefGoogle Scholar
  5. 5.
    Rosa F, Négrier P, Corvis Y, Espeau P. Crystal structure determination and thermal behavior upon melting of p-synephrine. Thermochim Acta. 2016;632:18–22.CrossRefGoogle Scholar
  6. 6.
    Wermester N, Aubin E, Pauchet M, Coste S, Coquerel G. Preferential crystallization in an unusual case of conglomerate with partial solid solutions. Tetrahedron Asymmetry. 2007;18:821–31.CrossRefGoogle Scholar
  7. 7.
    Renou L, Morelli T, Coste S, Petit MN, Berton B, Malandain JJ, Coquerel G. Chiral discrimination at the solid state of methyl 2-[diphenylmethylsulfinyl]acetate. Cryst Growth Des. 2007;7:1599–607.CrossRefGoogle Scholar
  8. 8.
    Kaemmere H, Lorenz H, Black SN, Seidel-Morgenstern A. Study of system thermodynamics and the feasibility of chiral resolution of the polymorphic system of malic acid enantiomers and its partial solid solutions. Cryst Growth Des. 2009;9:1851–62.CrossRefGoogle Scholar
  9. 9.
    Bredikhin AA, Zakharychev DV, Gubaidullin AT, Fayzullin RR, Pashagin AV, Bredikhina ZA. Crystallization features of the chiral drug timolol precursor: the rare case of conglomerate with partial solid solutions. Cryst Growth Des. 2014;14:1676–83.CrossRefGoogle Scholar
  10. 10.
    Taratin NV, Lorenz H, Kotelnikova EN, Glikin AE, Galland A, Dupray V, Coquerel G, Seidel-Morgenstern A. Mixed crystals in chiral organic systems: a case study on (R)- and (S)-ethanolammonium 3-chloromandelate. Cryst Growth Des. 2012;12:5882–8.CrossRefGoogle Scholar
  11. 11.
    Kehl T, van der Plaats G. US Patent 5.033.866; 1991.Google Scholar
  12. 12.
    Corvis Y, Négrier P, Espeau P. Physicochemical stability of solid dispersions of enantiomeric or racemic ibuprofen in stearic acid. J Pharm Sci. 2011;100:5235–43.CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Neumann MA. X-cell: a novel indexing algorithm for routine tasks and difficult cases. J Appl Cryst. 2003;36:356–65.CrossRefGoogle Scholar
  15. 15.
    Schröder I. Dependence of the solubility of a solid on its melting point. Z Phys Chem. 1893;11:449–65.Google Scholar
  16. 16.
    Van Laar JJ. Process of the fusion curves of firm alloys and amalgams. Arch Neerl. 1903;8:264–84.Google Scholar
  17. 17.
    Drebushchak VA, Kovalevskaya YA, Paukov IE, Boldyreva EV. Heat capacity of d- and dl-serine in a temperature range of 5.5 to 300 K. J Therm Anal Calorim. 2007;89:649–54.CrossRefGoogle Scholar
  18. 18.
    Paukov IE, Kovalevskaya YA, Boldyreva EV. Low-temperature thermodynamic properties of l-cysteine. J Therm Anal Calorim. 2008;93:423–8.CrossRefGoogle Scholar
  19. 19.
    Paukov IE, Kovalevskaya YA, Boldyreva EV. Low-temperature heat capacity of l- and dl-phenylglycines. J Therm Anal Calorim. 2012;108:1311–6.CrossRefGoogle Scholar
  20. 20.
    Paukov IE, Kovalevskaya YA, Boldyreva EV. Low-temperature thermodynamic properties of l- and dl-valines. J Therm Anal Calorim. 2013;111:905–10.CrossRefGoogle Scholar
  21. 21.
    Gheorghe D, Neacşu A, Contineanu I, Tănăsescu S, Perişanu S. A calorimetric study of l-, d- and dl-isomers of tryptophan. J Therm Anal Calorim. 2017;130:1145–52.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Chemical and Biological Technologies for Health (UTCBS), CNRS UMR8258, INSERM U1022, Paris Descartes University, Sorbonne-Paris-Cité, Chimie ParisTechPSL Research University, School of PharmacyParisFrance
  2. 2.Laboratoire Ondes et Matière d’Aquitaine, UMR CNRS 5798Université de BordeauxTalence CedexFrance

Personalised recommendations