Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 2, pp 973–981 | Cite as

Sinterization and hydration of synthesized cement clinker doped with sulfates

  • Liming Huang
  • Zhenghong YangEmail author


This paper aims to evaluate the influence of three kinds of sulfates from the green production of cement on its sintering and hydration. The properties of clinker and hydration were monitored by thermogravimetric and differential thermal analysis (TG–DTA), X-ray diffraction, X-ray fluorescence and isothermal conduction calorimeter. Results indicate that gypsum lowers the decomposition temperature of CaCO3 and all these Sulfates will enhance the solid-phase reaction but increase melting temperature. Sulfates reduce the content of C3S, but K2SO4 and 2CaSO4·K2SO4 is conducive to the formation of β-C2S. The hydration induction period is shortened by the sulfates. K2SO4 and 2CaSO4·K2SO4 improve the early hydration of clinker, but gypsum may lightly reduce the hydration reactivity of clinker in acceleration period. 2CaSO4·K2SO and K2SO can significantly accelerate the compressive strength development of cement clinker before 3 d; by contrast, gypsum is detrimental for that. The precipitation of hydration products (CH and C–S–H) in clinker with sulfates is more than that of clinker without sulfates at 9 h. K2SO4 can accelerate the hydration of clinker without forming ettringite.


Cement clinker Sulfates Sintering Degree of hydration 



The authors are grateful to the financial supports from the Shanghai municipal commission of science and technology (No. 17DZ1200300) and National Key Research and Development Projects of China (No. 2018YFD1101002).

Supplementary material

10973_2019_8294_MOESM1_ESM.pdf (400 kb)
Supplementary material 1 (PDF 399 kb)


  1. 1.
    Horsley C, Emmert MH, Sakulich A. Influence of alternative fuels on trace element content of ordinary Portland cement. Fuel. 2016;184:481–9.CrossRefGoogle Scholar
  2. 2.
    Lin K, Lo K, Hung M, et al. Utilization of reduction slag and waste sludge for Portland cement clinker production. Environ Prog Sustain Energ. 2017;37(2):1–7.Google Scholar
  3. 3.
    Tsiliyannis CA. Industrial wastes and by-products as alternative fuels in cement plants: evaluation of an industrial symbiosis option. J Ind Ecol. 2017;3:1–19.Google Scholar
  4. 4.
    Huang M, Ying X, Shen D, et al. Evaluation of oil sludge as an alternative fuel in the production of Portland cement clinker. Constr Build Mater. 2017;152:226–31.CrossRefGoogle Scholar
  5. 5.
    Mut MDMC, Nørskov LK, Glarborg P, et al. SO2 release as consequence of alternative fuels combustion in cement rotary kiln inlets. Energy Fuels. 2015;29(4):2729–37.CrossRefGoogle Scholar
  6. 6.
    Dominguez O, Torres-Castillo A, Flores-Velez LM, et al. Characterization using thermomechanical and differential thermal analysis of the sinterization of Portland clinker doped with CaF2. Mater Charact. 2010;61(4):459–66.CrossRefGoogle Scholar
  7. 7.
    Mehta PK. Concrete structure, properties, and materials. New York: McGraw-Hill Education; 2014.Google Scholar
  8. 8.
    Altwair NM, Kabir S. Green concrete structures by replacing cement with pozzolanic materials to reduce greenhouse gas emissions for sustainable environment. In: International engineering and construction conference. 2010, 269–279.Google Scholar
  9. 9.
    Taylor HFW. Distribution of sulfate between phases in Portland cement clinkers. Cem Concr Res. 1999;29(8):1173–9.CrossRefGoogle Scholar
  10. 10.
    Zhang Z, Qian J. Effect of protogenetic anhydrite on the hydration of cement under different curing temperature. Constr Build Mater. 2017;142:417–22.CrossRefGoogle Scholar
  11. 11.
    Hewlett PC, editor. Lea’s chemistry of cement and concrete. London: Arnold Publishers; 1998.Google Scholar
  12. 12.
    Kakali G, Kasselouri V. Investigation of the effect of Mo, Nb, W and Zr oxides on the formation of Portland cement clinker. Cem Concr Res. 1990;20(1):131–8.CrossRefGoogle Scholar
  13. 13.
    Gilioli C, Massazza F, Pezzuoli M. Studies on clinker calcium silicates bearing CaF2, and CaSO4. Cem Concr Res. 1979;9(3):295–302.CrossRefGoogle Scholar
  14. 14.
    Yang Z, Zhang Z, Energy Technology. Integrated utilization of sewage sludge for the cement clinker production. Berlin: Springer International Publishing; 2017. p. 95–102.Google Scholar
  15. 15.
    Perraki M, Perraki T, Kolovos K, Tsivilis S, Kakali G. Secondary raw materials in cement industry. J Therm Anal Calorim. 2002;24(70):143–50.CrossRefGoogle Scholar
  16. 16.
    Kolovos KG, Tsivilis S, Kakali G. Study of clinker dopped with P and S compounds. J Therm Anal Calorim. 2004;77(3):759–66.CrossRefGoogle Scholar
  17. 17.
    Taylor HFW. Cement chemistry. London: Thomas Telford; 1997.CrossRefGoogle Scholar
  18. 18.
    Li X, Huang H, Xu J. Statistical research on phase formation and modification of alite polymorphs in cement clinker with SO3, and MgO. Constr Build Mater. 2012;37(37):548–55.CrossRefGoogle Scholar
  19. 19.
    Moranvile-Regourd M, Bolkova A. Chemistry, structure, properties and quality of clinker. In: 9th ICCC. New Delhi, India. 1992; (1): 3–45.Google Scholar
  20. 20.
    Nocuò-Wczelik W. Effect of Na and Al on the phase composition and morphology of autoclaved calcium silicate hydrates. Cem Conc Res. 1999;29(11):1759–67.CrossRefGoogle Scholar
  21. 21.
    Mayco KCJN, Skalny J, Kalyoncu R. Crystal defects and hydration I Influence of lattice defects. Cem Concr Res. 1974;4(5):835–47.CrossRefGoogle Scholar
  22. 22.
    Bazzoni A, Ma S, Wang Q. The effect of magnesium and zinc ions on the hydration kinetics of C3S. J Am Ceram Soc. 2015;97(11):3684–93.CrossRefGoogle Scholar
  23. 23.
    Gualtieri ML, Romagnoli M, Miselli P, et al. Full quantitative phase analysis of hydrated lime using the Rietveld method. Cem Concr Res. 2012;42(9):1273–9.CrossRefGoogle Scholar
  24. 24.
    Snellings R, Bazzoni A, Scrivener K. The existence of amorphous phase in Portland cements: physical factors affecting Rietveld quantitative phase analysis. Cem Concr Res. 2014;59(2):139–46.CrossRefGoogle Scholar
  25. 25.
    Jansen D, Naber C, Ectors D, et al. The early hydration of OPC investigated by in situ XRD, heat flow calorimetry, pore water analysis and 1 H NMR: learning about adsorbed ions from a complete mass balance approach. Cem Concr Res. 2018;109:230–42.CrossRefGoogle Scholar
  26. 26.
    De La Torre AG, Bruque S, Campo J, et al. The superstructure of CS from synchrotron and neutron powder diffraction and its role in quantitative phase analyses. Cem Concr Res. 2002;32(9):1347–56.CrossRefGoogle Scholar
  27. 27.
    Jost KH, Ziemer B, Seydel R. Redetermination of the structure of β-dicalcium silicate. Acta Crystallogr B. 1977;33(6):1696–700.CrossRefGoogle Scholar
  28. 28.
    Mueller R, Stabilisierung verschiedener Dicalciumsilikat-Modifikationen durch den Einbau von Phosphat: Synthese, Rietveld-analyse, Kalorimetrie, Diploma-thesis (2001) University of Erlangen.Google Scholar
  29. 29.
    Mondal P, Jeffery JW. The crystal structure of tricalcium aluminate, Ca3Al2O6. Acta Crystallogr B. 2010;31(3):689–97.CrossRefGoogle Scholar
  30. 30.
    Jupe AC, Cockcroft JK, Barnes P, et al. The site occupancy of Mg in the brownmillerite structure and its effect on hydration properties: an X-ray/neutron diffraction and EXAFS study. J Appl Crystallogr. 2001;34(1):55–61.CrossRefGoogle Scholar
  31. 31.
    Goetz-Neunhoeffer F, Neubauer J. Refined ettringite structure for quantitative X-ray diffraction analysis. Powder Diffr. 2006;21(1):4–11.CrossRefGoogle Scholar
  32. 32.
    Busing WR, Levy HA. Neutron diffraction study of calcium hydroxide. J Chem Phys. 1957;26(3):563–8.CrossRefGoogle Scholar
  33. 33.
    Ishizawa N, Miyata T, Minato I, et al. A structural investigation of α-Al2O3 at 2170 K. Acta Crystallogr B. 2010;36(2):228–30.CrossRefGoogle Scholar
  34. 34.
    Roszczynialski W, Nocuń-Wczelik W. Studies of cementitious systems with new generation by-products from fluidised bed combustion. J Therm Anal Calorim. 2004;77(1):151–8.CrossRefGoogle Scholar
  35. 35.
    Balek V, Beckman IN. Theory of emanation thermal analysis: X characterization of morphology changes during hydration of cementitious binders. J Therm Anal Calorim. 2002;67(1):37–47.CrossRefGoogle Scholar
  36. 36.
    Strydom CA, Hudson-Lamb DL, Potgieter JH. The thermal dehydration of synthetic gypsum Thermochim. Acta. 1995;269–270(1):631–8.Google Scholar
  37. 37.
    Horkoss S, Lteif R, Rizk T. Influence of the clinker SO3 on the cement characteristics. Cem Concr Res. 2011;41(8):913–9.CrossRefGoogle Scholar
  38. 38.
    Jansen D, Goetz-Neunhoeffer F, Stabler C, Neubauer J. A remastered external standard method applied to the quantification of early OPC hydration. Cem Concr Res. 2011;41(6):602–8.CrossRefGoogle Scholar
  39. 39.
    Mota B, Matschei T, Scrivener K. The influence of sodium salts and gypsum on alite hydration. Cem Concr Res. 2015;75:53–65.CrossRefGoogle Scholar
  40. 40.
    Wang XY, Park KB. Analysis of the compressive strength development of concrete considering the interactions between hydration and drying. Cem Concr Res. 2017;102:1–15.CrossRefGoogle Scholar
  41. 41.
    D’Aloia L, Chanvillard G. Determining the ‘Apparent’ activation energy of concrete: Ea-numerical simulations of the heat of hydration of cement. Cem Concr Res. 2002;32(8):1277–89.CrossRefGoogle Scholar
  42. 42.
    Benameur HK, Wirquin E. Determination of apparent activation energy of concrete by isothermal calorimetry. Cem Concr Res. 2000;30(2):301–5.CrossRefGoogle Scholar
  43. 43.
    Copeland LE, Kantro DL, Verbeck G. Part IV-3 chemistry of hydration of portland cement. In: 4th International Symposium of the Chemistry of Cement, Washington, D.C. 1960; p. 429–465.Google Scholar
  44. 44.
    De Schutter G, Taerwe L. Degree of hydration-based description of mechanical properties of early-age concrete. Mater Struct. 1996;29(7):335–44.CrossRefGoogle Scholar
  45. 45.
    Han F, Zhang Z, Liu J, et al. Hydration kinetics of composite binder containing fly ash at different temperatures. J Therm Anal Calorim. 2016;124(3):1691–703.CrossRefGoogle Scholar
  46. 46.
    Nath SK, Mukherjee S, Maitra S, Kumar S. Kinetics study of geopolymerization of fly ash using isothermal conduction calorimetry. J Therm Anal Calorim. 2017;6:1–9.Google Scholar
  47. 47.
    Poole JL, Riding KA, Folliard KJ, Juenger MCG, Schindler AK. Methods for calculating activation energy for Portland cement. ACI Mater J. 2010;104(1):86–94.Google Scholar
  48. 48.
    Schindler AK, Folliard KJ. Heat of hydration models for cementitious materials. ACI Mater J. 2005;102(1):24–33.Google Scholar
  49. 49.
    Knudsen T. On particle size distribution in cement hydration. In: Proceeding of 7th international congress on the chemistry of cement. Vol I, Paris; 1980. p. 170.Google Scholar
  50. 50.
    Nicola V, Scarlett Y, Madsen IC. Quantification of phases with partial or no known crystal structures. Powder Diffr. 2006;21(4):278–84.CrossRefGoogle Scholar
  51. 51.
    Schreiner J, Jansen D, Ectors D, et al. New analytical possibilities for monitoring the phase development during the production of autoclaved aerated concrete. Cem Concr Res. 2018;107:247–52.CrossRefGoogle Scholar
  52. 52.
    Bergold ST, Goetz-Neunhoeffer F, Neubauer J. Quantitative analysis of C–S–H in hydrating alite pastes by in situ XRD. Cem Concr Res. 2013;53(2):119–26.CrossRefGoogle Scholar
  53. 53.
    Skocek J, Zajac M, Stabler C, et al. Predictive modelling of hydration and mechanical performance of low Ca composite cements: possibilities and limitations from industrial perspective. Cem Concr Res. 2017;100:68–83.CrossRefGoogle Scholar
  54. 54.
    Luxán MP, Frías M, Dorrego F. Potential expansion of cement mortars in the presence of K2SO4, and pozzolan. Cem Concr Res. 1994;24(4):728–34.CrossRefGoogle Scholar
  55. 55.
    Jawed I, Skalny J. Alkalies in cement and performance of Portland cement. Cem Concr Res. 1978;8(1):37–51.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Civil Engineering Materials Ministry of EducationTongji UniversityShanghaiChina
  2. 2.School of Materials Science and EngineeringTongji UniversityShanghaiChina

Personalised recommendations