Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3541–3549 | Cite as

Thermal decomposition of Nephelium lappaceum L. peel

Influence of chemical pretreatment and evaluation of pseudo-components by Fraser–Suzuki function
  • João Daniel S. Castro
  • Cesário F. das VirgensEmail author


Influence of chemical pretreatment in thermal behavior of Nephelium lappaceum L. peels was studied through thermogravimetric analysis, SEM, X-ray diffraction, FTIR and EDXRF. Results of derivate thermogravimetry were deconvoluted with Fraser–Suzuki function, demonstrating that the distribution of pseudo-components is affected by chemical pretreatment, where sulfuric acid pretreated sample (Ras) has not indicated the cellulose pseudo-component peak and the phosphoric acid pretreated sample (Rap) also did not demonstrate the lignin peak, indicating itself to be an effective tool in the prediction of pseudo-components of lignocellulosic samples. This result corroborates with FTIR spectra and XRD. The sample Rna (sodium hydroxide treated) has indicated modifications in cellulose crystalline structure, conversion of cellulose I/II, revealed by XRD. An EDXRF analysis demonstrated that the chemical pretreatment also influenced the distribution of minerals, constituted essentially of Na, Mg, Fe, K, Al and Cl. This change is evidenced when carrying out statistical analysis of the samples, and principal component analysis applied in EDXRF data revealed statistical differences between samples, separating in distinct quadrants.


Rambutan peel Fraser–Suzuki Deconvolution Thermal decomposition Pretreatment Principal component analysis 



The authors thank the Brazilian development agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) for granting scholarships; Programa de Pós-Graduação em Química Aplicada (PGQA) for the infrastructure; and laboratories LAMUME/IDEIA (UFBA) for the analyses carried out.

Supplementary material

10973_2019_8289_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)


  1. 1.
    Hussain A, Arif SM, Aslam M. Emerging renewable and sustainable energy technologies: state of the art. Renew Sustain Energy Rev. 2017;71:12–28. Scholar
  2. 2.
    Demirbas A. Waste management, waste resource facilities and waste conversion processes. Energy Convers Manag. 2011;52:1280–7. Scholar
  3. 3.
    Nozela WC, Braz CEM, Almeida S, Ribeiro CA, Crespi MS. Mixture of biomass to energy reuse. J Therm Anal Calorim. 2018;131:765–9. Scholar
  4. 4.
    Niu S, Chen M, Li Y, Lu T. Combustion characteristics of municipal sewage sludge with different initial moisture contents. J Therm Anal Calorim. 2017;129:1189–99. Scholar
  5. 5.
    de Alfaia RGSM, Costa AM, Campos JC. Municipal solid waste in Brazil: a review. Waste Manag Res. 2017;35:1195–209. Scholar
  6. 6.
    Abrelpe. Panorama of solid waste in Brazil 2015. Panor dos Resíduos Sólidos no Bras 2015 2015;92.Google Scholar
  7. 7.
    do Sacramento CK, Andrade RA. Cultivo do rambotä. Rev Bras Frutic. 2014;36:79–85.CrossRefGoogle Scholar
  8. 8.
    de Andrade RA, de Lemos EGM, Martins ABG, de Paula RC, Pitta Junior JL. Morphologic and chemical characterization of rambutan fruits. Rev Bras Frutic. 2008;30:958–63.CrossRefGoogle Scholar
  9. 9.
    de Andrade RA. Rambuteira. Rev Bras Frutic Soc Bras Frutic. 2012;34:I–II.CrossRefGoogle Scholar
  10. 10.
    Brasil. Lei no 12.305, de 02 de agosto de 2010: Institui a Política Nacional de Resíduos Sólidos; altera a Lei no 9.605, de 12 de fevereiro de 1998; e dá outras providências. Brasília: Brasil; 2010.Google Scholar
  11. 11.
    Gadonneix P, Sambo A, Nadeau MJ, Statham BA, Kim YD, Birnbaum L, et al. World Energy Resources 2013 Survey. London: World Energy Council London; 2013.Google Scholar
  12. 12.
    Ferreira ETDF, Balestieri JAP. Comparative analysis of waste-to-energy alternatives for a low-capacity power plant in Brazil. Waste Manag Res. 2018;36(3):247–58.CrossRefGoogle Scholar
  13. 13.
    Leme MMV, Rocha MH, Lora EES, Venturini OJ, Lopes BM, Ferreira CH. Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil. Resour Conserv Recycl. 2014;87:8–20.CrossRefGoogle Scholar
  14. 14.
    Shah MA, Khan MNS, Kumar V. Biomass residue characterization for their potential application as biofuels. J Therm Anal Calorim. 2018. Scholar
  15. 15.
    Alves JLF, da Silva JCG, Costa RL, Dos Santos Junior SF, da Silva Filho VF, Moreira RDFPM, Jose HJ. Investigation of the bioenergy potential of microalgae Scenedesmus acuminatus by physicochemical characterization and kinetic analysis of pyrolysis. J Therm Anal Calorim. 2019;135:3269–80. Scholar
  16. 16.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96:673–86.CrossRefGoogle Scholar
  17. 17.
    Singh R, Krishna BB, Kumar J, Bhaskar T. Opportunities for utilization of non-conventional energy sources for biomass pretreatment. Bioresour Technol. 2016;199:398–407. Scholar
  18. 18.
    Pellera F, Gidarakos E. Chemical pretreatment of lignocellulosic agroindustrial waste for methane production. Waste Manag. 2018;71:689–703. Scholar
  19. 19.
    Wang C, Li L. Thermal conversion of tobacco stem into gaseous products. J Therm Anal Calorim. 2019. Scholar
  20. 20.
    Pellera F, Santori S, Pomi R, Polettini A, Gidarakos E. Effect of alkaline pretreatment on anaerobic digestion of olive mill solid waste. Waste Manag. 2016;58:160–8.CrossRefGoogle Scholar
  21. 21.
    De Rosa IM, Kenny JM, Maniruzzaman M, Moniruzzaman M, Monti M, Puglia D, et al. Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres. Compos Sci Technol. 2011;71:246–54. Scholar
  22. 22.
    Liu Q, Wang S, Zheng Y, Luo Z, Cen K. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. J Anal Appl Pyrolysis. 2008;82:170–7.CrossRefGoogle Scholar
  23. 23.
    Sebestyén Z, May Z, Réczey K, Jakab E. The effect of alkaline pretreatment on the thermal decomposition of hemp. J Therm Anal Calorim. 2011;105:1061–9.CrossRefGoogle Scholar
  24. 24.
    Mothé CG, De Miranda IC. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods. J Therm Anal Calorim. 2013;113:497–505.CrossRefGoogle Scholar
  25. 25.
    Brandová D, Svoboda R, Zmrhalová ZO, Chovanec J, Bulánek R, Romanová J. Crystallization kinetics of glassy materials: the ultimate kinetic complexity? J Therm Anal Calorim. 2018;134:825–34.CrossRefGoogle Scholar
  26. 26.
    Nishikawa K, Ueta Y, Hara D, Yamada S, Koga N. Kinetic characterization of multistep thermal oxidation of carbon/carbon composite in flowing air. J Therm Anal Calorim. 2017;128:891–906. Scholar
  27. 27.
    Chen T, Wu W, Wu J, Cai J, Wu J. Determination of the pseudocomponents and kinetic analysis of selected combustible solid wastes pyrolysis based on Weibull model. J Therm Anal Calorim. 2016;126:1899–909.CrossRefGoogle Scholar
  28. 28.
    Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115:1780–91. Scholar
  29. 29.
    Chen C, Miao W, Zhou C, Wu H. Thermogravimetric pyrolysis kinetics of bamboo waste via Asymmetric Double Sigmoidal (Asym2sig) function deconvolution. Bioresour Technol. 2017;225:48–57. Scholar
  30. 30.
    Fraser RDB, Suzuki E. Resolution of overlapping absorption bands by least squares procedures. Anal Chem. 1966;38:1770–3.CrossRefGoogle Scholar
  31. 31.
    Poletto M, Zattera AJ, Forte MMC, Santana RMC. Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour Technol. 2012;109:148–53. Scholar
  32. 32.
    Luo S, Xiao B, Hu Z, Liu S. Effect of particle size on pyrolysis of single-component municipal solid waste in fixed bed reactor. Int J Hydrog Energy. 2010;35:93–7. Scholar
  33. 33.
    Segal L, Creely JJ, Martin AE, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J. 1959;29:786–94.CrossRefGoogle Scholar
  34. 34.
    Tomaz RMAG, Bittencourt E, Sabino NP, Kondo JI. Determinação dos índices de cristalinidade de fibras celulósicas. Bragantia. 1994;53:121–6.CrossRefGoogle Scholar
  35. 35.
    Wojdyr M. Fityk: a general-purpose peak fitting program. J Appl Crystallogr. 2010;43:1126–8.CrossRefGoogle Scholar
  36. 36.
    Santana AJ, dos Santos WNL, Silva LOB, das Virgens CF. Removal of mercury(II) ions in aqueous solution using the peel biomass of Pachira aquatica Aubl: kinetics and adsorption equilibrium studies. Environ Monit Assess Environ Monit Assess. 2016;188:293. Scholar
  37. 37.
    Roman M, Winter WT. Effect of sulphate groups from sulphuric acid hydrolysis on the thermal degradation behaviour of bacterial cellulose. Biomacromolecules. 2004;5:1671–7.CrossRefGoogle Scholar
  38. 38.
    Ahmad MS, Mehmood MA, Al Ayed OS, Ye G, Luo H, Ibrahim M, et al. Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresour Technol. 2017;224:708–13. Scholar
  39. 39.
    Kroon-Batenburg LMJ, Kroon J. The crystal and molecular structures of cellulose I and II. Glycoconj J. 1997;14:677–90.CrossRefGoogle Scholar
  40. 40.
    Carvalho MS, Virgens CF. Effect of alkaline treatment on the fruit peel of Pachira aquatica Aubl.: physico-chemical evaluation and characterization. Microchem J. 2018;143:410–5. Scholar
  41. 41.
    Motaung TE, Anandjiwala RD. Effect of alkali and acid treatment on thermal degradation kinetics of sugar cane bagasse. Ind Crops Prod. 2015;74:472–7. Scholar
  42. 42.
    Njoku VO, Foo KY, Asif M, Hameed BH. Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption. Chem Eng J. 2014;250:198–204. Scholar
  43. 43.
    Alrozi R, Zamanhuri NA, Osman MS. Removal of methylene blue from aqueous solution by adsorption onto NaOH-treated rambutan peel. In: 2012 IEEE business, engineering & industrial applications colloquium. IEEE; 2012. p. 92–7.Google Scholar
  44. 44.
    Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83:1–11.CrossRefGoogle Scholar
  45. 45.
    Lengowski EC, de Muniz GIB, Nisgoski S, Magalhães WLE. Cellulose acquirement evaluation methods with different degrees of crystallinity. Sci For Sci. 2013;41:185–94.Google Scholar
  46. 46.
    Langan P, Nishiyama Y, Chanzy H. A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc. 1999;121:9940–6.CrossRefGoogle Scholar
  47. 47.
    Oliveira EIS, Santos JB, Paula A, Gonçalves B, José NM. Characterization of the Rambutan Peel Fiber (Nephelium lappaceum) as a lignocellulosic material for technological applications. Chem Eng Trans. 2016;50:391–6.Google Scholar
  48. 48.
    dos Santos WNL, Cavalcante DD, da Silva EGP, das Virgens CF, de Dias FS. Biosorption of Pb(II) and Cd(II) ions by Agave sisalana (sisal fiber). Microchem J. 2011;97:269–73.CrossRefGoogle Scholar
  49. 49.
    Falcone JS, Bass JL, Angelella M, Schenk ER, Brensinger KA. The determination of sodium silicate composition using ATR FT-IR. Ind Eng Chem Res. 2010;49:6287–90. Scholar
  50. 50.
    Hori R, Wada M. The thermal expansion of cellulose II and IIIII crystals. Cellulose. 2006;13:281–90. Scholar
  51. 51.
    Jin H, Zha C, Gu L. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydr Res. 2007;342:851–8.CrossRefGoogle Scholar
  52. 52.
    Alonso DM, Wettstein SG, Dumesic JA. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev. 2012;41:8075.CrossRefGoogle Scholar
  53. 53.
    Rezende CA, De Lima M, Maziero P, Deazevedo E, Garcia W, Polikarpov I. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels. 2011;4:54.CrossRefGoogle Scholar
  54. 54.
    Kobayashi T, Sakai Y, Iizuka K. Hydrolysis of cellulose in a small amount of concentrated sulfuric acid. J Agric Chem Soc Jpn. 1960;24:443–9.Google Scholar
  55. 55.
    Qin W, Wu L, Zheng Z, Dong C, Yang Y. Lignin hydrolysis and phosphorylation mechanism during phosphoric acid-acetone pretreatment: a DFT study. Molecules. 2014;19:21335–49.CrossRefGoogle Scholar
  56. 56.
    Ioelovich M. Study of cellulose interaction with concentrated solutions of sulfuric acid. ISRN Chem Eng. 2012;2012:1–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Química Aplicada, Departamento de Ciências Exatas e da Terra IUniversidade do Estado da BahiaSalvadorBrazil

Personalised recommendations