Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3559–3569 | Cite as

Modified release microcapsules loaded with red propolis extract obtained by spray-dryer technique

Phytochemical, thermal and physicochemical characterizations
  • Ticiano G. do NascimentoEmail author
  • Gerson D. P. Redondo
  • Carla T. de Araújo Abreu
  • Valdemir C. Silva
  • Giselda M. Lira
  • Luciano A. Meireles Grillo
  • Marta Maria da Conceição
  • Johnnatan D. Freitas
  • Jonas S. Souza
  • João X. Araújo Júnior
  • Irinaldo D. Basílio-Júnior
Article

Abstract

Biopolymers are currently one of the most interesting materials applied in the medical and pharmaceutical fields. The objective of this work was to develop the modified release microcapsules loaded with red propolis extract (RPE) using a spray-dryer technique. In addition, this manuscript characterizes this red propolis microcapsules using phytochemicals, thermal, physicochemical and dissolution test. The RPE was incorporated in the biopolymer solution, and then submitted to spray-dryer technique to obtain modified release microcapsules loaded with RPE; then, they were submitted to different physicochemical characterization technique through SEM analysis, FTIR, thermal analysis (TG and DSC), dissolution test and phytochemical assays. The red propolis microcapsules presented spherical morphology with particle size between 2.5 and 35 μm, when analyzed by SEM technique. The thermal analysis showed that the coating material decreases the thermo-oxidative degradation of the RPE in the microcapsules and according to the calorimetric curves (DSC) and infrared spectra the microencapsulation of the red propolis extract was obtained. The quantification of the bioactive compounds showed high amounts of total phenols (98.3%) and total flavonoids (92.9%) contents, and it was possible determinate the encapsulation degree in microcapsules. The red propolis microcapsules present high antioxidant capacity (90.6%) in sequestering the free radical DPPH˙. The dissolution tests demonstrate slow flavonoids release (between 70 and 100%) from the microcapsules and have proven to be modified release microcapsules during 12 h experiments. The red propolis microcapsules can be applied in pharmaceutical and nutraceutical areas due to modified release property, antioxidant and antibacterial activities.

Keywords

Red propolis Biopolymers Spray drying Microencapsulation Modified release 

Notes

Acknowledgements

The authors thank to the CAPES and CNPq for its financial support (Grant No: 446630/2014-4) according to the financial aid to the researchers 14/2014-Universal/MCT/CNPq. The authors thank to the FAPEAL for its financial support PPSUS 2016 (Grant No: 600 30 000431/2017) and Edital PPG´s No 14/2016 (Grant No: 60030 000852/2016) according to the financial aid to the researchers 14/2014-Universal/MCT/CNPq The authors thank to FINEP for its financial support (CT-INFRA) in acquisition of some equipment’s and laboratorial facilities. The authors also want to thank to the Pharmaceutical Analysis Laboratory (LAFA) in the persons of Felipe Jardell Leão for the technical support at the dissolution test and dissolution profile and Johnnatan Freitas for the support in the SEM analysis at the Federal Institute of Alagoas.

Supplementary material

10973_2019_8287_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 kb)

References

  1. 1.
    Bankova V, Popova M, Trusheva B. New emerging fields of application of propolis. Maced J Chem Chem Eng. 2016; 35: 1–11. http://www.mjcce.org.mk/index.php/MJCCE/article/view/mjcce.2016.864/489. Accessed 16 Feb 2019.CrossRefGoogle Scholar
  2. 2.
    Cabral ISR, Oldoni TLC, Prado A, Bezerra RMN, Alencar SM, Ikegaki M, Rosalen PL. Composição fenólica, atividade antibacteriana e antioxidante da própolis vermelha brasileira. Quim Nova. 2009;32:1523–7.  https://doi.org/10.1590/S0100-40422009000600031.CrossRefGoogle Scholar
  3. 3.
    Sayed E, Ashrya E, Ahmadb T. The use of propolis as a vaccine’s adjuvant. Vaccine. 2012;31:31–9.  https://doi.org/10.1016/j.vaccine.2012.10.095.CrossRefGoogle Scholar
  4. 4.
    Do Nascimento T, da Silva PF, Azevedo LF, da Rocha LG, De Moraes Porto ICC, Limae Moura TF, Basílio-Júnior ID, Grillo LAM, Dornelas CB, Fonseca EJS, Oliveira EJ, Zhang AT, Watson DG. Polymeric nanoparticles of Brazilian red propolis extract: preparation, characterization, antioxidant and leishmanicidal activity. Nanoscale Res Lett. 2016;11:1–16.  https://doi.org/10.1186/s11671-016-1517-3.CrossRefGoogle Scholar
  5. 5.
    Daugsch A, Moraes CS, Fort P, Park YK. Brazilian red propolis—chemical composition and botanical origin. Evid Based Complement Altern Med. 2008;5:435–41.  https://doi.org/10.1093/ecam/nem057.CrossRefGoogle Scholar
  6. 6.
    Belščak-Cvitanović A, Lević S, Kalušević A, Špoljarić I, Đorđević V, Komes D, Mršić G, Nedović V. Efficiency assessment of natural biopolymers as encapsulants of green tea (Camellia sinensis L.) bioactive compounds by spray drying. Food Bioprocess Technol. 2015;8:2444–60.  https://doi.org/10.1007/s11947-015-1592-y.CrossRefGoogle Scholar
  7. 7.
    He H, Hong Y, Gua Z, Liu G, Cheng L, Li Z. Improved stability and controlled release of CLA with spray-dried microcapsules of OSA-modified starch and xanthan gum. Carbohydr Polym. 2016;147:243–50.  https://doi.org/10.1016/j.carbpol.2016.03.078.CrossRefPubMedGoogle Scholar
  8. 8.
    Deshmukh AS, Aminabhavi TM. Pharmaceutical applications of various natural gums. In: Ramawat K, Mérillon JM, editors. Polysaccharides. Cham: Springer; 2015.  https://doi.org/10.1007/978-3-319-16298-0_4.CrossRefGoogle Scholar
  9. 9.
    Moscovici M. Present and future medical applications of microbial exopolysaccharides. Front Microbiol. 29 September 2015.  https://doi.org/10.3389/fmicb.2015.0101.
  10. 10.
    Murmu SB, Mishra HN. The effect of edible coating based on Arabic gum, sodium caseinate and essential oil of cinnamon and lemon grass on guava. Food Chem. 2018;245:820–8.  https://doi.org/10.1016/j.foodchem.2017.11.104.CrossRefPubMedGoogle Scholar
  11. 11.
    Caia X, Xianfeng D, Cui D, Wang X, Yang Z, Zhu G. Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation. Food Hydrocoll. 2019;91:238–45.  https://doi.org/10.1016/j.foodhyd.2019.01.034.CrossRefGoogle Scholar
  12. 12.
    Jakobek L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015;175:556–67.  https://doi.org/10.1016/j.foodchem.2014.12.013.CrossRefPubMedGoogle Scholar
  13. 13.
    Ozkan G, Franco P, Marco ID, Xiao J, Capanoglu E. A review of microencapsulation methods for food antioxidants: principles, advantages, drawbacks and applications. Food Chem. 2019;272:494–506.  https://doi.org/10.1016/j.foodchem.2018.07.205.CrossRefPubMedGoogle Scholar
  14. 14.
    Cuevas-Bernardino JC, Leyva-Gutierrez FMA, Vernon-Carter EJ, Lobato-Calleros C, Roman-Guerrero A, Davidov-Pardo G. Formation of biopolymer complexes composed of pea protein and mesquite gum e Impact of quercetin addition on their physical and chemical stability. Food Hydrocoll. 2018;77:736–45.  https://doi.org/10.1016/j.foodhyd.2017.11.015.CrossRefGoogle Scholar
  15. 15.
    FDA, Food Additive Status List. In: Food. U.S. Food and Drug Administration. 1998. https://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm091048.htm. Accessed 16 Feb 2019.
  16. 16.
    Rezende YRRS, Nogueira JP, Narain N. Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: chemical, morphological and chemometric characterization. Food Chem. 2018;254:281–91.  https://doi.org/10.1016/j.foodchem.2018.02.026.CrossRefPubMedGoogle Scholar
  17. 17.
    Outuki PM, Francisco LMBF, Hoscheid J, Bonifácio KL, Barbosa DS, Cardoso MLC. Development of arabic and xanthan gum microparticles loaded withan extract of Eschweilera nana Miers leaves with antioxidant capacity. Colloids Surf A. 2016;499:102–12.  https://doi.org/10.1016/j.colsurfa.2016.04.006.CrossRefGoogle Scholar
  18. 18.
    Ré M-I. Formulating drug delivery systems by spray drying. Dry Technol. 2006;24:433–46.  https://doi.org/10.1080/07373930600611877.CrossRefGoogle Scholar
  19. 19.
    Nori MP, Favaro-Trindade CS, Alencar SM, Thomazini M, Balieiro JCC, Castillo CJC. Microencapsulation of propolis extract by complex coacervation. Food Sci Technol. 2011;44:429–35.  https://doi.org/10.1016/j.lwt.2010.09.010.CrossRefGoogle Scholar
  20. 20.
    Woisky G, Salatino A. Analysis of propolis: some parameters and procedures for chemical quality control. J Apic Res. 1998;37:99–105.  https://doi.org/10.1080/00218839.1998.11100961.CrossRefGoogle Scholar
  21. 21.
    Muñoz-Bernal OA, Torres-Aguirre GA, Núñez-Gastélum JA, de la Rosa LA, Rodrigo-Garcia J, Ayala-Zavala JF, Álvarez-Parrilla E. Nuevo acercamiento a la interacción del reactivo de Folin-Ciocalteu con azúcares durante la cuantificación de polifenoles totales. TIP. 2017;20:23–8.  https://doi.org/10.1016/j.recqb.2017.04.003.CrossRefGoogle Scholar
  22. 22.
    The United State Pharmacopeia, The National Formulary. USP 36/NF 31. Rockville: The United States Pharmacopeial convention, 2013.Google Scholar
  23. 23.
    ANVISA, Agencia Nacional de Vigilância Sanitária, Farmacopeia brasileira. 2010. pp. 459. BRASIL, Farmacopéia Brasileira 5ª Edição Vol. 2. Brasília: DF; Dou No 224, 24 de novembro de 2010. http://portal.anvisa.gov.br/documents/33832/260079/5%C2%AA+edi%C3%A7%C3%A3o+-+Volume+2/ce7e36ca-b3f4-46eb-9a99-2974c4041383. Accessed 10 Feb 2019.
  24. 24.
    Fernandes RVB, Borges SV, Botrel DA. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohyd Polym. 2014;101:524–32.  https://doi.org/10.1016/j.carbpol.2013.09.083.CrossRefGoogle Scholar
  25. 25.
    Rutz JK, Zambiazi RC, Borges CD, Krumreich FD, Luz SR, Hartwig N, da Rosa CG. Microencapsulation of purple Brazilian cherry juice in xanthan, taragums and xanthan-tara hydrogel matrixes. Carbohyd Polym. 2013;98:1256–65.  https://doi.org/10.1016/j.carbpol.2013.07.058.CrossRefGoogle Scholar
  26. 26.
    Silverstein R, Webster F, KiemLe D. Identificação Espectrométrica de compostos Orgánicos. 7th ed. Rio de Janeiro: LTC Editora; 2006.Google Scholar
  27. 27.
    Azevedo LF, Silva PF, Brandão MP, da Rocha LG, Aragão CFS, da Silva SAS, Porto ICCM, Basílio-Júnior ID, Fonseca EJS, de Moura MABF, do Nascimento TG. Polymeric nanoparticle systems loaded with red propolis extract: a comparative study of the encapsulating systems, PCL-Pluronic versus Eudragit®E100-Pluronic. J Apic Res. 2018; 57:255–70.  https://doi.org/10.1080/00218839.2017.1412878.CrossRefGoogle Scholar
  28. 28.
    Food and Agriculture Organization of the United Nations. Online Edition: “Specifications for Flavourings”. 2018. http://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/jecfa-flav/details/en/c/1323. Accessed 22 Mar 2018.
  29. 29.
    Righi AA. Perfil Químico de Amostras de Própolis Brasileiras. 102p. Dissertação de Mestrado, Instituto de Biociências, Universidade de São Paulo, São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/41/41132/tde-02022009-141706/pt-br.php.  https://doi.org/10.11606/d.41.2008.tde-02022009-141706. Accessed 23 Aug 2018.
  30. 30.
    De Mendonça ICG, Porto ICCM, do Nascimento TG, deSouza NS, Oliveira JMS, Arruda RES, Mousinho KC, Santos AF, Basílio-Júnior ID, Parolia A, Barreto FS. Brazilian red propolis: phytochemical screening, antioxidant activity and effect against cancer cells. BMC Complement Altern Med. 2015;15:1–12.  https://doi.org/10.1186/s12906-015-0888-9.CrossRefGoogle Scholar
  31. 31.
    doNascimento TG, Silva AS, Constant PBL, daSilva SAS, deMoura MABF, deAlmeida CP, Silva VC, Wanderley AB, Basílio Júnior ID, Escodro PB. Phytochemical screening, antioxidant and antibacterial activities of some commercial extract of propolis. J Apic Res. 2018;57:246–54.  https://doi.org/10.1080/00218839.2017.1412563.CrossRefGoogle Scholar
  32. 32.
    Castro ML, Cury JA, Rosalen PL, Alencar SM, Ikegaki M, Duarte S, Koo H. Propolis do sudeste e nordeste do Brasil: influência da sazonalidade na atividade antibacteriana e composição fenólica. Quim Nova. 2007;30:1512–6.  https://doi.org/10.1590/S0100-40422007000700003.CrossRefGoogle Scholar
  33. 33.
    Kanakdande D, Bhosale R, Singhal RS. Stability of cumin oleoresin microencapsulated in different combination of gum arabic, maltodextrin and modified starch. Carbohyd Polym. 2007;67:536–41.  https://doi.org/10.1016/j.carbpol.2006.06.023.CrossRefGoogle Scholar
  34. 34.
    Almeida ETC, da Silva MC, Oliveira JMS, Kamiya RU, Arruda RES, Vieira DA, Silva VC, Escodro PB, Basílio-Júnior ID, doNascimento TG. Chemical and microbiological characterization of tinctures and microcapsules loaded with Brazilian red propolis extract. J Pharm Anal. 2017;7:280–7.  https://doi.org/10.1016/j.jpha.2017.03.004.CrossRefGoogle Scholar
  35. 35.
    Talukdar MM, Kinget R. Swelling and drug release behaviour of xanthan gum matrix tablets. Int J Pharm. 1995;120:63–72.  https://doi.org/10.1016/0378-5173(94)00410-7.CrossRefGoogle Scholar
  36. 36.
    Rowe R, Sheskey P, Quinn M. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical Press; 2009.Google Scholar
  37. 37.
    Argin S, Kofinas P, Lo YM. The cell release kinetics and the swelling behavior of physically crosslinked xanthanechitosan hydrogels in simulated gastrointestinal conditions. Food Hydrocoll. 2014;40:138–44.  https://doi.org/10.1016/j.foodhyd.2014.02.018.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Ticiano G. do Nascimento
    • 1
    • 2
    Email author
  • Gerson D. P. Redondo
    • 1
  • Carla T. de Araújo Abreu
    • 2
  • Valdemir C. Silva
    • 1
  • Giselda M. Lira
    • 2
  • Luciano A. Meireles Grillo
    • 1
  • Marta Maria da Conceição
    • 3
  • Johnnatan D. Freitas
    • 4
  • Jonas S. Souza
    • 4
  • João X. Araújo Júnior
    • 1
  • Irinaldo D. Basílio-Júnior
    • 1
    • 2
  1. 1.Laboratório de Tecnologia Farmacêutica e Laboratório de Análises Farmacêuticas e Alimentícias (LAFA), Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Enfermagem e Farmácia (ESENFAR)Universidade Federal de Alagoas (UFAL)MaceióBrazil
  2. 2.Laboratório de Tecnologia de Secagem, Programa de Pós-Graduação em Nutrição, Faculdade de NutriçãoUniversidade Federal de Alagoas (UFAL)MaceióBrazil
  3. 3.Departamento de Tecnologia de Alimentos, Centro de TecnologiaUniversidade Federal da ParaíbaJoão PessoaBrazil
  4. 4.Departamento de QuímicaInstituto Federal de Alagoas (IFAL)MaceióBrazil

Personalised recommendations