Advertisement

Thermodynamic properties of TiC nanowire from first principles

  • Mahmoud JafariEmail author
  • Ashkan Shekaari
  • Najmeh Delavari
  • Reza Jafari
Article
  • 1 Downloads

Abstract

We have investigated the thermodynamic properties of titanium carbide (TiC) nanowire within the framework of density functional theory and quasi-harmonic approximation via calculating the temperature dependence of a number of thermodynamic quantities including entropy, number of microstates, total and free energies, and specific heat. The level of disorder of the nanowire has been found to be larger than that of the bulk mainly due to expansion in only one direction, which accordingly results in acquiring more spatial degrees of freedom. A linear function of temperature has been also found for the low-temperature specific heat of the nanowire being in a remarkable agreement with the general \(T^{\text{n}}\)-law for Debye systems. Results firmly establish a direct correlation between the spatial expansion of a TiC compound and its low-temperature specific heat and entropy.

Keywords

Density functional theory Thermodynamic properties TiC nanowire 

Notes

References

  1. 1.
    Price DL, Cooper BR, Wills JM. Full-potential linear-muffin-tin-orbital study of brittle fracture in titanium carbide. Phys. Rev. B. 1992;46:11368.CrossRefGoogle Scholar
  2. 2.
    Chen Y, Wang H. Growth morphologies and mechanism of TiC in the laser surface alloyed coating on the substrate of TiAl intermetallics. J. Alloys Compd. 2003;351:304–8.CrossRefGoogle Scholar
  3. 3.
    Ruberto C, Lundqvist BI. Nature of adsorption on TiC (111) investigated with density-functional calculation. Phys. Rev. B. 2007;75:235438.CrossRefGoogle Scholar
  4. 4.
    Fang L, Wang L, Gong J, Dai H, Miao D. First-principles study of bulk and (001) surface of TiC. Trans. Nonferrous Met. Soc. China. 2010;20:857–62.CrossRefGoogle Scholar
  5. 5.
    Wang ZQ, Liu XF, Liu YH, Zhang JY, Yu LN, Bian XF. Structural heredity of TiC and its influences on refinement behaviors of AlTiC master alloy. Trans. Nonferrous Met. Soc. China. 2003;13:790–3.Google Scholar
  6. 6.
    Song MS, Huang B, Zhang MX, Li GJ. Study of formation behavior of TiC ceramic obtained by self-propagating high-temperature synthesis from Al–Ti–C elemental powders. Int. J. Refract. Met. Hard Mater. 2009;27:584–9.CrossRefGoogle Scholar
  7. 7.
    Hojou K, Otsu H, Furuno S, Sasajima N, Izui K. In situ observation of damage evolution in TiC during hydrogen and deuterium ion irradiation at low temperatures. J. Nucl. Mater. 1996;239:279–83.CrossRefGoogle Scholar
  8. 8.
    Jones MI, Mccoll IR, Grant DM, Parker KG, Parker TL. Protein adsorption and platelet attachment and activation on TiN, TiC, and DLC coatings on titanium for cardiovascular applications. J. Biomed. Mater. Res. B. 2000;54:413–21.CrossRefGoogle Scholar
  9. 9.
    Jafari M, Khajehmiri Z. Mechanical properties of TiC nanowire from DFT calculations. Iran. J. Sci. Technol. Trans. Sci. 2018;42:1623.CrossRefGoogle Scholar
  10. 10.
    Mahmoodian R, Hamdi M, Hassan MA, Akbari A. Mechanical and chemical characterization of a TiC/C system synthesized using a focus plasma arc. PLoS ONE. 2015;10:0130836.Google Scholar
  11. 11.
    Houska C. Thermal expansion and atomic vibration amplitudes for TiC, TiN, ZrC, ZrN, and pure tungsten. J. Phys. Chem. Solids. 1964;25:359–66.CrossRefGoogle Scholar
  12. 12.
    Dodd S, Cankurtaran M, James B. Ultrasonic determination of the elastic and nonlinear acoustic properties of transition-metal carbide ceramics: TiC and TaC. J. Mater. Sci. 2003;38:1107–15.CrossRefGoogle Scholar
  13. 13.
    Dubrovinskaia NA, Dubrovinskya LS, Saxenaa SK, Ahujab R, Johanssonb B. High-pressure study of titanium carbide. J. Alloys Compd. 1999;289:24–7.CrossRefGoogle Scholar
  14. 14.
    Winkler B, Juarez-Arellano EA, Friedrich A, Bayarjargal L, Yan J, Clark SM. Reaction of titanium with carbon in a laser heated diamond anvil cell and reevaluation of a proposed pressure-induced structural phase transition of TiC. J. Alloys Compd. 2009;478:392–7.CrossRefGoogle Scholar
  15. 15.
    Postnikov A, Entel P. Ab initio simulations of Fe and TiC clusters. Phase Transit. 2004;77:149–59.CrossRefGoogle Scholar
  16. 16.
    Mecabih S, Amrane N, Nabi Z, Abbar B, Aourag H. Description of structural and electronic properties of TiC and ZrC by generalized gradient approximation. Physica. 2000;285:392–6.CrossRefGoogle Scholar
  17. 17.
    Dridi Z, Bouhafs B, Ruterana P, Aourag H. First-principles calculations of vacancy effects on structural and electronic properties of \(\text{ TiC }_x\) and \(\text{ TiN }_x\). J. Phys.: Condens. Matter. 2002;14:10237.Google Scholar
  18. 18.
    Jochym PT, Parlinski K, Sternik M. TiC lattice dynamics from ab initio calculations. Eur. Phys. J. B. 1999;10:9–13.CrossRefGoogle Scholar
  19. 19.
    Yang Y, Lu H, Yu C, Chen JM. First-principles calculations of mechanical properties of TiC and TiN. J. Alloys Compd. 2009;485:542–7.CrossRefGoogle Scholar
  20. 20.
    Xia X, Zhan J, Zhong Y, Wang X, Tu J, Fan HJ. Single-crystalline, metallic TiC nanowires for highly robust and wide-temperature electrochemical energy storage. Small. 2017;13:1602742.CrossRefGoogle Scholar
  21. 21.
    Dang DY, Fan JL, Gong HR. Thermodynamic and mechanical properties of TiC from ab initio calculation. J. Appl. Phys. 2014;116:033509.CrossRefGoogle Scholar
  22. 22.
    Liu K, Zhou X-L, Chen H-H, Lu L-Y. Phase transition and thermodynamic properties of TiN under pressure via first-principles calculations. J. Therm. Anal. Calorim. 2012;110:973–8.CrossRefGoogle Scholar
  23. 23.
    Jafari M, Hajiyani HR. Optical properties of \(\alpha\), \(\beta\) and \(\omega\) structure of Titanium: ab initio approach. Comput. Mater. Sci. 2011;50:2549–53.CrossRefGoogle Scholar
  24. 24.
    Jafari M, Hajiyani HR, Sohrabikia Z, Galavani H. First-principles calculations of optical properties of titanium nanochains. Comput. Mater. Sci. 2013;77:224–9.CrossRefGoogle Scholar
  25. 25.
    Sohrabikia Z, Jafari M. Electronic and magnetic properties of linear and dimerized titanium nanochains under compressive and tensile strain. J. Clust. Sci. 2016;27:183–91.CrossRefGoogle Scholar
  26. 26.
    Jafari M, Ghanad S. Optoelectrical properties of TiC nanowires from density functional theory. J. Optoelectron. Adv. Mater. 2015;17:318–22.Google Scholar
  27. 27.
    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–8.CrossRefGoogle Scholar
  28. 28.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM. Quantum ESPRESSO a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 2009;21:395502–21.Google Scholar
  29. 29.
    Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 1990;41:7892.CrossRefGoogle Scholar
  30. 30.
    Methfessel M, Paxton AT. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B. 1989;40:3616–21.CrossRefGoogle Scholar
  31. 31.
    Murnaghan FD. The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA. 1944;30:244–7.CrossRefGoogle Scholar
  32. 32.
    Birch F. Finite elastic strain of cubic crystals. Phys. Rev. 1947;71:809–24.CrossRefGoogle Scholar
  33. 33.
    Fletcher R. Practical methods of optimization. 2nd ed. New York: Wiley; 1987.Google Scholar
  34. 34.
    Billeter SR, Turnera AJ, Thiel W. Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates. Phys. Chem. Chem. Phys. 2000;2:2177–86.CrossRefGoogle Scholar
  35. 35.
    Kokalj A. XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Modell. 1999;17:176–9.CrossRefGoogle Scholar
  36. 36.
    Wang Y, Liu ZK, Chen LQ. Thermodynamic properties of Al, Ni, NiAl, and Ni\(_3\)Al from first-principles calculations. Acta Mater. 2004;52:2665–71.CrossRefGoogle Scholar
  37. 37.
    Mohri T, Chen Y. First-principles investigation of L10-disorder phase equilibria of Fe–Ni, –Pd and –Pt binary alloy systems. J. Alloys Compd. 2004;383:23–31.CrossRefGoogle Scholar
  38. 38.
    Moruzzi VL, Janak JF, Schwarz K. Calculated thermal properties of metals. Phys. Rev. B. 1988;37:790–9.CrossRefGoogle Scholar
  39. 39.
    Shang S, Böttger AJ. A combined cluster variation method and ab initio approach to the gamma-Fe[N]/gamma’-Fe4N1-x phase equilibrium. Acta Mater. 2005;53:255–64.CrossRefGoogle Scholar
  40. 40.
    Arroyave R, Shin D, Liu ZK. Ab initio thermodynamic properties of stoichiometric phases in the Ni–Al system. Acta Mater. 2005;53:1809–19.CrossRefGoogle Scholar
  41. 41.
    Kohanoff J. Electronic structure calculations for solids and molecules: theory and computational methods. 1st ed. Cambridge: Cambridge University Press; 2006.CrossRefGoogle Scholar
  42. 42.
    Kittel C. Introduction to solid state physics. New York: Wiley; 1996.Google Scholar
  43. 43.
    Wallace D. Thermodynamics of crystals. New York: Dover; 1998.Google Scholar
  44. 44.
    Pathria RK, Beale PD. Statistical mechanics. 3rd ed. Oxford: Butterworth-Heinemann; 2011.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Mahmoud Jafari
    • 1
    Email author
  • Ashkan Shekaari
    • 1
  • Najmeh Delavari
    • 1
  • Reza Jafari
    • 2
  1. 1.Department of PhysicsK. N. Toosi University of TechnologyTehranIran
  2. 2.School of Civil EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations