Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 3, pp 1871–1877 | Cite as

Thermal destruction of coprecipitated hydroxides of indium and dysprosium

  • Tatiana Malinovskaya
  • Sergei GhyngazovEmail author
  • Valentina Zhek


Thermal destruction of indium and dysprosium hydroxides coprecipitated from solutions of their nitrate and chloride salts with ammonia was investigated by DTA/TG, XRD and MS methods. The features of these processes were revealed in solutions of different nature. It is shown that the method of thermal decomposition of mixed indium and dysprosium hydroxides coprecipitated from the solution of their chloride salts is environmentally appropriate and economically viable. The size of the coprecipitated hydroxide particles of indium oxide produced through thermal destruction at up to 500 °C (13 nm) allows us to recommend this method for production of nanodispersed mixed oxides of indium and dysprosium.


Indium oxide Dysprosium oxide Thermal destruction hydroxides Chemical coprecipitation 



The results were obtained within the framework of the state task of the Ministry of Education and Science of the Russian Federation, Project No. 16.3037.2017/4.6.


  1. 1.
    Kment S, Hubicka Z, Krysa J, Sekora D, Zlamal M, Olejnicek J, Cada M, Ksirova P, Remes Z, Schmuki P, Schubert E, Zboril R. On the improvement of PEC activity of hematite thin films deposited by high-power pulsed magnetron sputtering method. Appl Catal B Environ. 2015;165:344–50.CrossRefGoogle Scholar
  2. 2.
    Sirghi L. Plasma synthesis of photocatalytic TiOx thin films. Plasma Sources Sci Technol. 2016;25(3):033003.CrossRefGoogle Scholar
  3. 3.
    Rodriguez JA, Fernandez MG. Synthesis, properties and applications of oxide nanoparticles. New Jersey: Whiley; 2007.CrossRefGoogle Scholar
  4. 4.
    Fernandez MG, Martinzes AA, Hanson JC, Rodriguez JA. Chem Rev. 2004;104:4063–104.CrossRefGoogle Scholar
  5. 5.
    Tietz H. Technical Ceramics. Düsseldorf: VDI Verlag; 1994.Google Scholar
  6. 6.
    Ming-Wei Wu, Pang-Hsin Lai, Chia-Hong Hong, Fang-Cheng Chou. The sintering behavior, microstructure, and electrical properties of gallium-doped zinc oxide ceramic targets. J Eur Ceram Soc. 2014;34(15):3715–22.CrossRefGoogle Scholar
  7. 7.
    Ikesue A, Kinoshita T, Kamata K, Yoshida K. Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. J Am Ceram Soc. 1995;78(4):1033–40.CrossRefGoogle Scholar
  8. 8.
    Yagi H, Yanagitani T, Numazawa T, Ueda K. The physical properties of transparent Y3Al5O12 elastic modulus at high temperature and thermal conductivity at low temperature. Ceram Int. 2007;33(5):711–4.CrossRefGoogle Scholar
  9. 9.
    Merrilea Joyce Mayo. Processing of nanocrystalline ceramics from ultrafine particles. Int Mater Rev. 1996;41(3):85–115.CrossRefGoogle Scholar
  10. 10.
    Zhukov I, Vorozhtsov S, Promakhov V, Bondarchuk I, Zhukov A, Vorozhtsov A. Plasma-chemical method for producing metal oxide powders and their application. J Phys: Conf Ser. 2015;652:012027.Google Scholar
  11. 11.
    Kuzjukevics A, Linderoth S, Grabis J. Characterization of yttria-doped zirconia powders produced by plasma-chemical method. Solid State Ion. 1996;92(3–4):253–60.CrossRefGoogle Scholar
  12. 12.
    Nomoev AV, Bardakhanov SP, Schreiber M, Bazarova DZ, Baldanov BB, Romanov NA. Synthesis, characterization, and mechanism of formation of Janus-like nanoparticles of tantalum silicide-silicon (TaSi2/Si). Nanomaterials. 2015;5(1):26–35.CrossRefGoogle Scholar
  13. 13.
    D’Amato R, Falconieri M, Gagliardi S, Popovici E, Serra E, Terranova G, Borsella E. Synthesis of ceramic nanoparticles by laser pyrolysis: from research to applications. J Anal App Pyrolysis. 2013;104:461–9.CrossRefGoogle Scholar
  14. 14.
    Borsella E, Botti S, Fantoni R, Alexandrescu R. Composite Si/C/N powder production by laser induced gas phase reactions. J Mater Res. 1992;7(8):2257–68.CrossRefGoogle Scholar
  15. 15.
    Kotov YA, Osipov VV, Ivanov MG, et al. Properties of YSZ and CeGdO nanopowders prepared by target evaporation with a pulse-repetitive CO2-laser. Rev Adv Mater Sci. 2003;5:171–7.Google Scholar
  16. 16.
    Gulyaev I. Experience in plasma production of hollow ceramic microspheres with required wall thickness. Ceram Int. 2015;41(1):101–7.CrossRefGoogle Scholar
  17. 17.
    Szépvölgyi J, Károly Z. Preparation of hollow alumina microspheres by RF thermal plasma. Key Eng Mater. 2004;264–268:101–4.CrossRefGoogle Scholar
  18. 18.
    Ghyngazov SA, Frangulyan TS. Impact of pressure in static and dynamic pressing of zirconia ultradisperse powders on compact density and compaction efficiency during sintering. Ceram Int. 2017;43(18):16555–9.CrossRefGoogle Scholar
  19. 19.
    Mironov V, Stankevich P, Beljaeva I, Glushenkov V. Static-dynamic powder material compaction methods. Eng Rural Dev 2016;15:1128–32.Google Scholar
  20. 20.
    Boltachev GSh, Nagayev KA, Paranin SN, Spirin AV, Volkov NB. Magnetic pulsed compaction of nanosized powders. New York: Nova Science; 2010.Google Scholar
  21. 21.
    Khasanov OL, Pokholkov YuP, Ivanov YuF, Ljubimova LL, Makeev AA. Effect of ultrasonic compaction of nanopowder on structure and fracture character of zirconia nanoceramics. Fract Mech Ceram. 2002;13:503–12.CrossRefGoogle Scholar
  22. 22.
    Lukianova OA, Novikov VYu, Parkhomenko AA, Sirota VV, Krasilnikov VV. Microstructure of spark plasma-sintered silicon nitride ceramics. Nano Res Lett. 2017;12:293.CrossRefGoogle Scholar
  23. 23.
    Surzhikov AP, Franguljyan TS, Ghyngazov SA, Vasiljev IP, Chemyavsky AV. Sintering of zirconia ceramics by intense high-energy electron beam. Ceram Int. 2016;42(12):13888–92.CrossRefGoogle Scholar
  24. 24.
    Vayos G Karayannis. Microwave sintering of ceramic materials. In: IOP conference series: mater science and engineering. 2016;161(1):012068.Google Scholar
  25. 25.
    Anand K, Thangaraj R, Kohli N, Singh RC. Structural, optical and ethanol gas sensing properties of In2O3 and Dy3+: In2O3 nanoparticles. 58th DAE Solid State Physics Symposium (DAE SSPS-2013). 2014.
  26. 26.
    Trusova EA, Khrushcheva AA, Vokhmintcev KV. Sol-gel synthesis and phase composition of ultrafine ceria-doped zirconia powders for functional ceramics. J Eur Ceram Soc. 2012;32(9):1977–81.CrossRefGoogle Scholar
  27. 27.
    Egorov YP, Malinovskaya TD, Naiden EP, Sachkov VI, Sachkova EI. Chem Sustain Dev. 2002;10:679–85.Google Scholar
  28. 28.
    Inoue K, Tanaka N, Tanaka T. Lanthanoid-containing oxide target. Patent US, No. 8,038,911 B2, 2011.Google Scholar
  29. 29.
    Inoue K, Yano K, Kasami M. Sputtering target, oxide semiconductor film and semiconductor device. Patent US, No. 8,333,913 B2, 2012.Google Scholar
  30. 30.
    Wei Ruichao, Huang Shenshi, Huang Que, Ouyang Dongxu, Chen Qinpei, Yuen Richard, Wang Jian. Experimental study on the fire characteristics of typical nitrocellulose mixtures using a cone calorimeter. J Therm Anal Calorim. 2018;134(3):1471–80.CrossRefGoogle Scholar
  31. 31.
    Souri D, Shahmoradi Y. Calorimetric analysis of non-crystalline TeO2-V2O5-Sb2O3. J Therm Anal Calorim. 2017;129(1):601–7.CrossRefGoogle Scholar
  32. 32.
    Brazolin GF, SilvaL CCS, Silva S, Silva RAG. Phase transformations in an annealed Cu–9Al–10Mn–3Gd alloy. J Therm Anal Calorim. 2018;134(3):1405–12.CrossRefGoogle Scholar
  33. 33.
    Hinatsu Yukio, Doi Yoshihiro. Synthesis of new fluorite-related rare earth oxides LnLn2′MO7 (Ln, Ln′ = rare earths; M = Nb, Sb, Ta), their structures and magnetic properties by calorimetry measurements. J Therm Anal Calorim. 2017;127(1):749–54.CrossRefGoogle Scholar
  34. 34.
    Brinker CJ, Scherer GW. Sol-Gel Science. The physics and chemistry of Sol-Gel processing. Academic Press, INC; Am Imprint of Elsevier; 1990. 908 p.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Siberian Physical Technical Institute, Tomsk State UniversityTomskRussian Federation
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussian Federation

Personalised recommendations