Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 3, pp 1971–1977 | Cite as

Adsorption isotherms and thermal behavior of hybrids based on quercetin and inorganic fillers

  • Azzurra Milia
  • Maurizio Bruno
  • Giuseppe CavallaroEmail author
  • Giuseppe Lazzara
  • Stefana Milioto


We investigated the adsorption process of quercetin onto several inorganic fillers, such as kaolinite, calcium carbonate and alumina. Firstly, we performed equilibrium adsorption studies in order to determine the quercetin/filler adsorption isotherms, which were successfully fitted through the Langmuir model. Based on the adsorption data analysis, we estimated the maximum adsorption capacity of each filler as well as the Langmuir constant, which is related to the affinity between quercetin and the surfaces of the inorganic particles. Then, we prepared hybrids formed by fillers saturated with quercetin. The obtained composites were characterized by thermogravimetric analysis with the aim of determining the loading efficiency as well as the effect of the adsorption process on the quercetin thermal stability. According to the Langmuir isotherms, alumina revealed the most efficient support for quercetin adsorption. Finally, we observed that the interactions with the fillers’ surfaces induce a reduction in the quercetin degradation temperature.


Thermogravimetry Adsorption isotherms Quercetin Kaolinite Alumina Calcium carbonate 



The authors acknowledge the financial supports from Progetto di ricerca e sviluppo “AGM for CuHe (ARS01_00697)” and University of Palermo.

Supplementary material

10973_2019_8257_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)


  1. 1.
    Cattaneo AS, Ferrara C, Marculescu AM, Giannici F, Martorana A, Mustarelli P, et al. Solid-state NMR characterization of the structure and thermal stability of hybrid organic–inorganic compounds based on a HLaNb2O7 Dion–Jacobson layered perovskite. Phys Chem Chem Phys. 2016;18:21903–12.PubMedGoogle Scholar
  2. 2.
    Groppo E, Agostini G, Borfecchia E, Lazzarini A, Liu W, Lamberti C, et al. The pyridyl functional groups guide the formation of Pd nanoparticles inside A porous poly(4-vinyl-pyridine). ChemCatChem. 2015;7:2188–95.Google Scholar
  3. 3.
    Cavallaro G, Lazzara G, Milioto S, Parisi F, Evtugyn V, Rozhina E, et al. Nanohydrogel formation within the Halloysite lumen for triggered and sustained release. ACS Appl Mater Interfaces. 2018;10:8265–73.PubMedGoogle Scholar
  4. 4.
    Catauro M, Naviglio D, Risoluti R, Vecchio Ciprioti S. Sol–gel synthesis and thermal behavior of bioactive ferrous citrate–silica hybrid materials. J Therm Anal Calorim. 2018;133:1085–92.Google Scholar
  5. 5.
    Soares NFF, Moreira FKV, Fialho TL, Melo NR. Triclosan-based antibacterial paper reinforced with nano-montmorillonite: a model nanocomposite for the development of new active packaging. Polym Adv Technol. 2012;23:901–8.Google Scholar
  6. 6.
    Gorrasi G, Pantani R, Murariu M, Dubois P. PLA/halloysite nanocomposite films: water vapor barrier properties and specific key characteristics. Macromol Mater Eng. 2014;299:104–15.Google Scholar
  7. 7.
    Junior CRF, Tanaka FN, Bortolin A, de Moura MR, Aouada FA. Thermal and morphological characterization of highly porous nanocomposites for possible application in potassium controlled release. J Therm Anal Calorim. 2018;131:2205–12.Google Scholar
  8. 8.
    Zhao Y, Abdullayev E, Vasiliev A, Lvov Y. Halloysite nanotubule clay for efficient water purification. J Colloid Interface Sci. 2013;406:121–9.PubMedGoogle Scholar
  9. 9.
    Lee J, Ko J, Ryu J, Shin J, Kim H, Sohn D. Catechol grafted silica particles for enhanced adhesion to metal by coordinate bond. Colloids Surf A Physicochem Eng Asp. 2016;511:55–63.Google Scholar
  10. 10.
    Cavallaro G, Milioto S, Parisi F, Lazzara G. Halloysite nanotubes loaded with calcium hydroxide: alkaline fillers for the deacidification of waterlogged archeological woods. ACS Appl Mater Interfaces. 2018;10:27355–64.PubMedGoogle Scholar
  11. 11.
    Cavallaro G, Lazzara G, Milioto S, Parisi F. Halloysite nanotubes as sustainable nanofiller for paper consolidation and protection. J Therm Anal Calorim. 2014;117:1293–8.Google Scholar
  12. 12.
    Poggi G, Toccafondi N, Melita LN, Knowles JC, Bozec L, Giorgi R, et al. Calcium hydroxide nanoparticles for the conservation of cultural heritage: new formulations for the deacidification of cellulose-based artifacts. Appl Phys A. 2014;114:685–93.Google Scholar
  13. 13.
    Joshi A, Abdullayev E, Vasiliev A, Volkova O, Lvov Y. Interfacial modification of clay nanotubes for the sustained release of corrosion inhibitors. Langmuir. 2013;29:7439–48.PubMedGoogle Scholar
  14. 14.
    Elumalai DN, Tully J, Lvov Y, Derosa PA. Simulation of stimuli-triggered release of molecular species from halloysite nanotubes. J Appl Phys. 2016;120:134311.Google Scholar
  15. 15.
    Lazzara G, Cavallaro G, Panchal A, Fakhrullin R, Stavitskaya A, Vinokurov V, et al. An assembly of organic–inorganic composites using halloysite clay nanotubes. Curr Opin Colloid Interface Sci. 2018;35:42–50.Google Scholar
  16. 16.
    Awad ME, López-Galindo A, Setti M, El-Rahmany MM, Iborra CV. Kaolinite in pharmaceutics and biomedicine. Int J Pharmaceut. 2017;533:34–48.Google Scholar
  17. 17.
    Makaremi M, Pasbakhsh P, Cavallaro G, Lazzara G, Aw YK, Lee SM, et al. Effect of morphology and size of halloysite nanotubes on functional pectin bionanocomposites for food packaging applications. ACS Appl Mater Interfaces. 2017;9:17476–88.PubMedGoogle Scholar
  18. 18.
    Zhong B, Lin J, Liu M, Jia Z, Luo Y, Jia D, et al. Preparation of halloysite nanotubes loaded antioxidant and its antioxidative behaviour in natural rubber. Polym Degrad Stab. 2017;141:19–25.Google Scholar
  19. 19.
    Fix D, Andreeva DV, Lvov YM, Shchukin DG, Möhwald H. Application of inhibitor-loaded halloysite nanotubes in active anti-corrosive coatings. Adv Funct Mater. 2009;19:1720–7.Google Scholar
  20. 20.
    Zhu H, Xiao X, Guo Z, Han X, Liang Y, Zhang Y, et al. Adsorption of vanadium(V) on natural kaolinite and montmorillonite: characteristics and mechanism. Appl Clay Sci. 2018;161:310–6.Google Scholar
  21. 21.
    Liu X, Hicher P, Muresan B, Saiyouri N, Hicher P-Y. Heavy metal retention properties of kaolin and bentonite in a wide range of concentration and different pH conditions. Appl Clay Sci. 2016;119:365–74.Google Scholar
  22. 22.
    Zhang Q, Yan Z, Ouyang J, Zhang Y, Yang H, Chen D. Chemically modified kaolinite nanolayers for the removal of organic pollutants. Appl Clay Sci. 2018;157:283–90.Google Scholar
  23. 23.
    Nandi BK, Goswami A, Purkait MK. Adsorption characteristics of brilliant green dye on kaolin. J Hazard Mater. 2009;161:387–95.PubMedGoogle Scholar
  24. 24.
    Luo P, Zhao Y, Zhang B, Liu J, Yang Y, Liu J. Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes. Water Res. 2010;44:1489–97.PubMedGoogle Scholar
  25. 25.
    Chong KY, Chia CH, Zakaria S, Sajab MS. Vaterite calcium carbonate for the adsorption of Congo red from aqueous solutions. J Environ Chem Eng. 2014;2:2156–61.Google Scholar
  26. 26.
    Vantsyan MA, Kochetkov AA, Marchenko IV, Kiryukhin YI, Nabatov BV, Artemov VV, et al. Nanostructured calcium carbonate particles as fluorophore carriers. Cryst Rep. 2015;60:951–8.Google Scholar
  27. 27.
    Al Omari MMH, Rashid IS, Qinna NA, Jaber AM, Badwan AA. Chapter two-calcium carbonate. In: Brittain HG, editor. Profiles of drug substances, excipients and related methodology. Berlin: Academic; 2016. p. 31–132.Google Scholar
  28. 28.
    Thenepalli T, Jun AY, Han C, Ramakrishna C, Ahn JW. A strategy of precipitated calcium carbonate (CaCO3) fillers for enhancing the mechanical properties of polypropylene polymers. Korean J Chem Eng. 2015;32:1009–22.Google Scholar
  29. 29.
    Abdolmohammadi S, Siyamak S, Ibrahim NA, Yunus WMZW, Rahman MZA, Azizi S, et al. Enhancement of mechanical and thermal properties of polycaprolactone/chitosan blend by calcium carbonate nanoparticles. Int J Mol Sci. 2012;13:4508–22.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Hao Z, Liu H, Guo B, Li H, Zhang J, Gan L, et al. Sol–gel synthesis of alumina using inorganic salt precursor. Acta Chim Sin. 2007;23:289–94.Google Scholar
  31. 31.
    Pu S, Li L, Ma J, Lu F, Li J. Disperse fine equiaxed alpha alumina nanoparticles with narrow size distribution synthesised by selective corrosion and coagulation separation. Sci Rep. 2015;5:11575.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhang X, Ge Y, Hannula S-P, Levänen E, Mäntylä T. Nanocrystalline α-alumina with novel morphology at 1000 °C. J Mater Chem. 2008;18:2423–5.Google Scholar
  33. 33.
    McHale JM, Navrotsky A, Perrotta AJ. Effects of increased surface area and chemisorbed H2O on the relative stability of nanocrystalline γ-Al2O3 and α-Al2O3. J Phys Chem B. 1997;101:603–13.Google Scholar
  34. 34.
    Naiya TK, Bhattacharya AK, Das SK. Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina. J Colloid Interface Sci. 2009;333:14–26.PubMedGoogle Scholar
  35. 35.
    Díaz E, Ordóñez S, Vega A, Coca J. Adsorption characterisation of different volatile organic compounds over alumina, zeolites and activated carbon using inverse gas chromatography. J Chromatogr A. 2004;1049:139–46.PubMedGoogle Scholar
  36. 36.
    Wasti A, Ali Awan M. Adsorption of textile dye onto modified immobilized activated alumina. J Assoc Arab Univ Basic Appl. 2016;20:26–31.Google Scholar
  37. 37.
    Alzarrug FA, Dimitrijević MM, Jančić Heinemann RM, Radojević V, Stojanović DB, Uskoković PS, et al. The use of different alumina fillers for improvement of the mechanical properties of hybrid PMMA composites. Mater Des. 2015;86:575–81.Google Scholar
  38. 38.
    Zhou J, Fang L, Liao J, Li L, Yao W, Xiong Z, et al. Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo. PLoS ONE. 2017;12:e0172838.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Anushiravani M, Bakhshaee M, Taghipour A, Naghedi-Baghdar H, Farshchi MK, Hoseini SS, et al. A systematic review of randomized controlled trials with herbal medicine on chronic rhinosinusitis. Phytother Res. 2017;32:395–401.PubMedGoogle Scholar
  40. 40.
    Massaro M, Piana S, Colletti CG, Noto R, Riela S, Baiamonte C, et al. Multicavity halloysite-amphiphilic cyclodextrin hybrids for co-delivery of natural drugs into thyroid cancer cells. J Mater Chem B. 2015;3:4074–81.Google Scholar
  41. 41.
    Dintcheva NT, Catalano G, Arrigo R, Morici E, Cavallaro G, Lazzara G, et al. Pluronic nanoparticles as anti-oxidant carriers for polymers. Polym Degrad Stab. 2016;134:194–201.Google Scholar
  42. 42.
    Ristić I, Krakovsky I, Janić T, Cakić S, Miletić A, Jotanović M, et al. The influence of the nanofiller on thermal properties of thermoplastic polyurethane elastomers. J Therm Anal Calorim. 2018;134:895–901.Google Scholar
  43. 43.
    Cicala G, Tosto C, Latteri A, La Rosa AD, Blanco I, Elsabbagh A, et al. Green composites based on blends of polypropylene with liquid wood reinforced with hemp fibers: thermomechanical properties and the effect of recycling cycles. Materials. 2017;10:998–1013.PubMedCentralGoogle Scholar
  44. 44.
    Blanco I, Bottino FA. Thermal study on phenyl, hepta isobutyl-polyhedral oligomeric silsesquioxane/polystyrene nanocomposites. Polym Compos. 2013;34:225–32.Google Scholar
  45. 45.
    Rotaru A, Nicolaescu I, Rotaru P, Neaga C. Thermal characterization of humic acids and other components of raw coal. J Therm Anal Calorim. 2008;92:297–300.Google Scholar
  46. 46.
    Terekhova IV, Kulikov OV, Barannikov VP. Thermal dissociation of supramolecular complexes on the basis of 18-crown-6 and amino acids. Russ J Gen Chem. 2004;74:1213–7.Google Scholar
  47. 47.
    Sun P, Liu G, Lv D, Dong X, Wu J, Wang D. Effective activation of halloysite nanotubes by piranha solution for amine modification via silane coupling chemistry. RSC Adv. 2015;5:52916–25.Google Scholar
  48. 48.
    Rotaru A, Dumitru M. Thermal behaviour of CODA azoic dye liquid crystal and nanostructuring by drop cast and spin coating techniques. J Therm Anal Calorim. 2017;127:21–32.Google Scholar
  49. 49.
    Cavallaro G, Grillo I, Gradzielski M, Lazzara G. Structure of hybrid materials based on halloysite nanotubes filled with anionic surfactants. J Phys Chem C. 2016;120:13492–502.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Azzurra Milia
    • 1
  • Maurizio Bruno
    • 1
  • Giuseppe Cavallaro
    • 2
    Email author
  • Giuseppe Lazzara
    • 2
    • 3
  • Stefana Milioto
    • 2
    • 3
  1. 1.Dipartimento STEBICEFUniversità degli Studi di PalermoPalermoItaly
  2. 2.Dipartimento di Fisica e ChimicaUniversità degli Studi di PalermoPalermoItaly
  3. 3.Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTMFlorenceItaly

Personalised recommendations