Advertisement

Influence of Al2O3 nanoparticles on the stability and viscosity of nanofluids

Insights from molecular dynamics simulation
  • Mir-Shahabeddin Izadkhah
  • Saeed Zeinali HerisEmail author
Article
  • 8 Downloads

Abstract

Improving the performance of heat transfer fluids is becoming significantly important. One of the most effective methods for increasing thermal conductivity is the addition of solid nanoparticles to fluids. The molecular dynamics simulation method has the proper ability to diagnose the stability of fluids. This method can be used with a view to the low cost and high repeatability as a suitable method for studying different materials. In this study, the stability and viscosity of the nanofluid at different percentages of base fluid [water–ethylene glycol (EG)] in contact with Al2O3 nanoparticles, was investigated by molecular dynamics simulation with using some analyzes such as total energy, kinetic energy, radial distribution function diagrams and dispersion diagrams. The results show that, the stability of Al2O3 is better where the percentage of water in the base fluid is higher. The molecular dynamics simulation properly predicts the nanofluid viscosities in all concentrations, temperatures and for each base fluid. The maximum discrepancy between experimental and simulation results is 15.1% at 40 °C for 0.5% Al2O3 nanoparticles in the water–EG (60:40) mixture. The obtained results can provide useful understanding of the structural and transport properties of nanofluids, not only in the EG–water nanofluids, but also in other types of nanofluids.

Keywords

Molecular dynamics simulation Al2O3 nanofluid Ethylene glycol Stability 

Notes

References

  1. 1.
    Izadkhah M-S, Erfan-Niya H, Heris SZ. Influence of graphene oxide nanosheets on the stability and thermal conductivity of nanofluids. J Therm Anal Calorim. 2019;135(1):581–95.Google Scholar
  2. 2.
    Abbasi FM, Hayat T, Ahmad B. Peristaltic transport of copper–water nanofluid saturating porous medium. Physica E. 2015;67:47–53.  https://doi.org/10.1016/j.physe.2014.11.002.Google Scholar
  3. 3.
    Azimi M, Mozaffari A. Heat transfer analysis of unsteady graphene oxide nanofluid flow using a fuzzy identifier evolved by genetically encoded mutable smart bee algorithm. Int J Eng Sci Technol. 2015;18(1):106–23.  https://doi.org/10.1016/j.jestch.2014.10.002.Google Scholar
  4. 4.
    Yang J, Zhao N, Li Z, Sun C. A combined theory model for predicting the viscosity of water-based Newtonian nanofluids containing spherical oxide nanoparticles. J Therm Anal Calorim. 2019;135(2):1311–21.Google Scholar
  5. 5.
    Sasmal C. Analysis of the effects of inclination angle, nanoparticle volume fraction and its size on forced convection from an inclined elliptic cylinder in aqueous nanofluids. J Therm Anal Calorim. 2018;132(2):1–13.Google Scholar
  6. 6.
    Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Lemont: Argonne National Lab; 1995.Google Scholar
  7. 7.
    Parametthanuwat T, Bhuwakietkumjohn N, Rittidech S, Ding Y. Experimental investigation on thermal properties of silver nanofluids. Int J Heat Fluid Flow. 2015;56:80–90.Google Scholar
  8. 8.
    Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh S. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127(3):2561–75.Google Scholar
  9. 9.
    Sundar LS, Farooky MH, Sarada SN, Singh MK. Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. Int Commun Heat Mass Transf. 2013;41:41–6.  https://doi.org/10.1016/j.icheatmasstransfer.2012.11.004.Google Scholar
  10. 10.
    Syam Sundar L, Venkata Ramana E, Singh MK, Sousa ACM. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an experimental study. Int Commun Heat Mass Transf. 2014;56:86–95.  https://doi.org/10.1016/j.icheatmasstransfer.2014.06.009.Google Scholar
  11. 11.
    Wan Z, Deng J, Li B, Xu Y, Wang X, Tang Y. Thermal performance of a miniature loop heat pipe using water–copper nanofluid. Appl Therm Eng. 2015;78:712–9.  https://doi.org/10.1016/j.applthermaleng.2014.11.010.Google Scholar
  12. 12.
    Heydari A, Akbari OA, Safaei MR, Derakhshani M, Alrashed AA, Mashayekhi R, Shabani GAS, Zarringhalam M, Nguyen TK. The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel. J Therm Anal Calorim. 2018;131(3):2893–912.Google Scholar
  13. 13.
    Aghayari R, Maddah H, Zarei M, Dehghani M, Kaskari Mahalle SG. Heat transfer of nanofluid in a double pipe heat exchanger. Int Sch Res Not. 2014;2014:1–7.  https://doi.org/10.1155/2014/736424.Google Scholar
  14. 14.
    Bhanvase B, Sarode M, Putterwar L, Abdullah K, Deosarkar M, Sonawane S. Intensification of convective heat transfer in water/ethylene glycol based nanofluids containing TiO2 nanoparticles. Chem Eng Process. 2014;82:123–31.Google Scholar
  15. 15.
    Kumaresan V, Velraj R. Experimental investigation of the thermo-physical properties of water–ethylene glycol mixture based CNT nanofluids. Thermochim Acta. 2012;545:180–6.Google Scholar
  16. 16.
    Yancheshmeh MS, Haghighi SS, Gholipour M, Dehghani O, Rahimpour M, Raeissi S. Modeling of ethane pyrolysis process: a study on effects of steam and carbon dioxide on ethylene and hydrogen productions. Chem Eng J. 2013;215:550–60.Google Scholar
  17. 17.
    Yu W, Xie H, Li Y, Chen L, Wang Q. Experimental investigation on the thermal transport properties of ethylene glycol based nanofluids containing low volume concentration diamond nanoparticles. Colloids Surf A. 2011;380(1):1–5.Google Scholar
  18. 18.
    Choi C, Yoo H, Oh J. Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Curr Appl Phys. 2008;8(6):710–2.Google Scholar
  19. 19.
    Choi S. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ Fed. 1995;231:99–106.Google Scholar
  20. 20.
    Xu H, Gong L, Huang S, Xu M. Flow and heat transfer characteristics of nanofluid flowing through metal foams. Int J Heat Mass Transf. 2015;83:399–407.  https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.024.Google Scholar
  21. 21.
    Yang X, Wang L, Zhou G, Sui N, Gu Y, Wan J. Electrochemical detection of H2O2 based on Fe3O4 nanoparticles with graphene oxide and polyamidoamine dendrimer. J Cluster Sci. 2015;26(3):789–98.Google Scholar
  22. 22.
    Toghraie D, Mokhtari M, Afrand M. Molecular dynamic simulation of Copper and Platinum nanoparticles Poiseuille flow in a nanochannels. Physica E. 2016;84:152–61.Google Scholar
  23. 23.
    Rezaei M, Azimian AR, Toghraie D. Molecular dynamics study of an electro-kinetic fluid transport in a charged nanochannel based on the role of the stern layer. Physica A. 2015;426:25–34.Google Scholar
  24. 24.
    Noorian H, Toghraie D, Azimian AR. The effects of surface roughness geometry of flow undergoing Poiseuille flow by molecular dynamics simulation. Heat Mass Transf. 2014;50(1):95–104.Google Scholar
  25. 25.
    Noorian H, Toghraie D, Azimian AR. Molecular dynamics simulation of Poiseuille flow in a rough nano channel with checker surface roughnesses geometry. Heat Mass Transf. 2014;50(1):105–13.Google Scholar
  26. 26.
    Rezaei M, Azimian AR, Toghraie SD. The surface charge density effect on the electro-osmotic flow in a nanochannel: a molecular dynamics study. Heat Mass Transf. 2015;51(5):661–70.Google Scholar
  27. 27.
    Toghraie Semiromi D, Azimian AR. Molecular dynamics simulation of annular flow boiling with the modified Lennard–Jones potential function. Heat Mass Transf. 2012;48(1):141–52.Google Scholar
  28. 28.
    Wang X, Jing D. Determination of thermal conductivity of interfacial layer in nanofluids by equilibrium molecular dynamics simulation. Int J Heat Mass Transf. 2019;128:199–207.Google Scholar
  29. 29.
    Topal I, Servantie J. Molecular dynamics study of the thermal conductivity in nanofluids. Chem Phys. 2019;516:147–51.Google Scholar
  30. 30.
    Achhal EM, Jabraoui H, Zeroual S, Loulijat H, Hasnaoui A, Ouaskit S. Modeling and simulations of nanofluids using classical molecular dynamics: particle size and temperature effects on thermal conductivity. Adv Powder Technol. 2018;29(10):2434–9.Google Scholar
  31. 31.
    Zeroual S, Loulijat H, Achehal E, Estellé P, Hasnaoui A, Ouaskit S. Viscosity of Ar–Cu nanofluids by molecular dynamics simulations: effects of nanoparticle content, temperature and potential interaction. J Mol Liq. 2018;268:490–6.Google Scholar
  32. 32.
    Dang LX, Annapureddy HVR, Sun X, Thallapally PK, Peter MB. Understanding nanofluid stability through molecular simulation. Chem Phys Lett. 2012;551:115–20.  https://doi.org/10.1016/j.cplett.2012.09.025.Google Scholar
  33. 33.
    Lin Y-S, Hsiao P-Y, Chieng C-C. Thermophysical characteristics of ethylene glycol-based copper nanofluids using nonequilibrium and equilibrium methods. Int J Therm Sci. 2012;62:56–60.  https://doi.org/10.1016/j.ijthermalsci.2012.02.003.Google Scholar
  34. 34.
    Haile J. Molecular dynamics simulation. New York: Wiley; 1992.Google Scholar
  35. 35.
    Chang J, Kim H. Molecular dynamic simulation and equation of state of Lennard–Jones chain fluids. Korean J Chem Eng. 1998;15(5):544–51.Google Scholar
  36. 36.
    Toghraie Semiromi D, Azimian AR. Molecular dynamics simulation of nonodroplets with the modified Lennard–Jones potential function. Heat Mass Transf. 2011;47(5):579–88.Google Scholar
  37. 37.
    Toghraie Semironi D, Azimian AR. Molecular dynamics simulation of liquid–vapor phase equilibrium by using the modified Lennard-Jones potential function. Heat Mass Transf. 2010;46(3):287–94.Google Scholar
  38. 38.
    Nosé SI. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 2002;100(1):191–8.Google Scholar
  39. 39.
    Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. New York: Academic press; 2001.Google Scholar
  40. 40.
    Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys. 1997;106(14):6082–5.Google Scholar
  41. 41.
    Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.Google Scholar
  42. 42.
    Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins Struct Funct Bioinform. 1988;4(1):31–47.Google Scholar
  43. 43.
    Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Oxford University Press; 1989.Google Scholar
  44. 44.
    Sadus RJ. Molecular simulation of fluids. Amsterdam: Elsevier Science; 2002.Google Scholar
  45. 45.
    Erfan-Niya H, Izadkhah M-S, Moradkhani H. Rheological behavior of water–ethylene glycol based graphene oxide nanofluids. Iran J Chem Chem Eng. 2018. (in Press).Google Scholar
  46. 46.
    Reid RC, Prausnitz JM, Poling BE. The properties of gases and liquids. New York: McGraw-Hill; 1987.Google Scholar
  47. 47.
    Izadkhah M, Niya HE, Moradkhani H. A study on the thermophysical properties of water/ethylene glycol based nanofluids using non-equilibrium molecular dynamics and computational fluid dynamics methods. Modares Mech Eng. 2016;16(7):153–62.Google Scholar
  48. 48.
    Mansoori GA. Radial distribution functions and their role in modeling of mixtures behavior. Fluid Phase Equilib. 1993;87(1):1–22.Google Scholar
  49. 49.
    Hamid KA, Azmi W, Mamat R, Usri N, Najafi G. Investigation of Al2O3 nanofluid viscosity for different water/EG mixture based. Energy Procedia. 2015;79:354–9.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Faculty of Chemical and Petroleum EngineeringUniversity of TabrizTabrizIran

Personalised recommendations