Advertisement

Thermal and mechanical behavior of biodegradable polyester films containing cellulose nanofibers

  • Adriana Nicoleta FroneEmail author
  • Denis Mihaela Panaitescu
  • Ioana Chiulan
  • Augusta Raluca Gabor
  • Cristian Andi Nicolae
  • Madalina Oprea
  • Marius Ghiurea
  • Dan Gavrilescu
  • Adrian Catalin Puitel
Article
  • 32 Downloads

Abstract

Agricultural waste is a valuable source of advanced materials. Cheap nanocellulose may be obtained from plum shells agricultural residues and further used instead of expensive nanocellulose as reinforcement in biopolymers. In this work, two types of nanocellulose, cellulose nanocrystals (CN) and cellulose nanofibers (CF), were isolated from plum seed shells using two different approaches. CN and CF from plum seed shells were used for the first time as reinforcing agents in a polylactic acid/poly(3-hydroxybutyrate) (PLA/PHB) matrix using a solvent casting method. The surface morphology, thermal (TG and DSC), static and dynamic mechanical (DMA) properties of the resulted biocomposite films were characterized and compared to the neat matrix. Atomic force microscopy—peak force quantitative nanomechanical mapping emphasized the influence of nanocellulose type upon the crystalline structure of PLA/PHB biocomposites and the dispersion of nanofibers/nanocrystals in the polymer matrix. Thermal and XRD analyses showed that the incorporation of CN increased the thermal stability and crystallinity of PLA/PHB biocomposite film. Young’s modulus and storage modulus of PLA/PHB/CN biocomposite were higher compared to that of PLA/PHB/CF showing the better reinforcing capability of CN compared to CF. This is consistent with the better dispersion of CN observed by PF QNM. The good effect of cellulose nanocrystals obtained from plum seed shells on the properties of PLA/PHB matrix highlights the potential of this cheap nanocellulose to obtain biocomposites in very advantageous conditions. This approach is proposed as an affordable and efficient tool to employ agricultural wastes as raw materials for high added-value products.

Keywords

Biocomposites Cellulose nanofibers Polylactic acid Polyhydroxybutyrate Thermal properties Crystallinity Mechanical behavior 

Notes

Acknowledgements

This work was supported by two grants of Ministry of Research and Innovation, CNCS—UEFISCDI, PN-III-P1-1.1-TE-2016-2164, No. 94/2018, Biocompatible multilayer polymer membranes with tuned mechanical and antiadherent properties (BIOMULTIPOL) and PN-III-P4-ID-PCE-2016-0431, No. 148/2017, Nanocellulose 3D structures for regenerative medicine (CELL-3D) within PNCDI III.

References

  1. 1.
    Ferreira FV, Dufresne A, Pinheiro IF, Souza DHS, Gouveia RF, Mei LHI, Lona LMF. How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: a comprehensive review. Eur Polym J. 2018;108:274–85.CrossRefGoogle Scholar
  2. 2.
    Youssef AM, El-Sayed SM. Bionanocomposites materials for food packaging applications: concepts and future outlook. Carbohydr Polym. 2018;193:19–27.CrossRefGoogle Scholar
  3. 3.
    Immonen K, Lahtinen P, Pere J. Effects of surfactants on the preparation of nanocellulose–PLA composite. Bioengineering. 2017.  https://doi.org/10.3390/bioengineering4040091.Google Scholar
  4. 4.
    Sharib M, Kumar R, Kumar DK. Polylactic acid incorporated polyfurfuryl alcohol bioplastics: thermal, mechanical and curing studies. J Therm Anal Calorim. 2018;132:1593–600.CrossRefGoogle Scholar
  5. 5.
    Ozmen U, Baba BO. Thermal characterization of chicken feather/PLA biocomposites. J Therm Anal Calorim. 2017;129:347–55.CrossRefGoogle Scholar
  6. 6.
    Hong SG, Huang SC. Effect of modified silica on the crystallization and degradation of poly(3-hydroxybutyrate). J Therm Anal Calorim. 2015;119:1693–702.CrossRefGoogle Scholar
  7. 7.
    Murariu M, Dubois P. PLA composites: from production to properties. Adv Drug Deliv Rev. 2016;107:17–46.CrossRefGoogle Scholar
  8. 8.
    Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM. Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr Polym. 2014;107:16–24.CrossRefGoogle Scholar
  9. 9.
    Garcia-Garcia D, Garcia-Sanoguera D, Fombuena V, Lopez-Martinez J, Balart R. Improvement of mechanical and thermal properties of poly(3-hydroxybutyrate) (PHB) blends with surface-modified halloysite nanotubes (HNT). Appl Clay Sci. 2018;162:487–98.CrossRefGoogle Scholar
  10. 10.
    Ublekov F, Budurova D, Staneva M, Natova M, Penchev H. Self-supporting electrospun PHB and PHBV/organoclay nanocomposite fibrous scaffolds. Mater Lett. 2018;218:353–6.CrossRefGoogle Scholar
  11. 11.
    Swaroop C, Shukla M. Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications. Int J Biol Macromol. 2018;113:729–36.CrossRefGoogle Scholar
  12. 12.
    Sullivan EM, Karimineghlani P, Naraghi M, Gerhardt RA, Kalaitzidou K. The effect of nanofiller geometry and compounding method on polylactic acid nanocomposite films. Eur Polym J. 2016;77:31–42.CrossRefGoogle Scholar
  13. 13.
    Fortunati E, Yang W, Luzi F, Kenny J, Torre L, Puglia D. Lignocellulosic nanostructures as reinforcement in extruded and solvent casted polymeric nanocomposites: an overview. Eur Polym J. 2016;80:295–316.CrossRefGoogle Scholar
  14. 14.
    Arrieta MP, López J, López D, Kenny JM, Peponi L. Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Ind Crops Prod. 2016;93:290–301.CrossRefGoogle Scholar
  15. 15.
    Kiziltas A, Nazari B, Erbas Kiziltas E, Gardner DJ, Han Y, Rushing TS. Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system. Carbohydr Polym. 2016;140:393–9.CrossRefGoogle Scholar
  16. 16.
    Ketabchi MR, Khalid M, Ratnam CT, Walwekar R. Mechanical and thermal properties of polylactic acid composites reinforced with cellulose nanoparticles extracted from kenaf fibre. Mater Res Express. 2016;3:125301.CrossRefGoogle Scholar
  17. 17.
    Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM. PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties. Polym Degrad Stab. 2014;107:139–49.CrossRefGoogle Scholar
  18. 18.
    Moriana R, Vilaplana F, Ek M. Cellulose nanocrystals from forest residues as reinforcing agent for composites: a study from macro- to nano-dimensions. Carbohydr Polym. 2016;139:139–49.CrossRefGoogle Scholar
  19. 19.
    Franciele MP, Andrade-Mahecha MM, Amaral Sobral PJ, Menegalli FC. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. J Colloid Interface Sci. 2017;505:154–67.CrossRefGoogle Scholar
  20. 20.
    Pirayesh H, Khazaeian A. Using almond (Prunus amygdalus L.) shell as a bio-waste resource in wood based composite. Composites Part B. 2012;43:1475–9.CrossRefGoogle Scholar
  21. 21.
    Urruzola I, Robles E, Serrano L, Labidi J. Nanopaper from almond (Prunus dulcis) shell. Cellulose. 2014;21:1619–29.CrossRefGoogle Scholar
  22. 22.
    Duran N, Lemes AP, Duran M, Freer J, Baeza J. A minireview of cellulose nanocrystals and its potential integration as co-product in bioethanol production. J Chil Chem Soc. 2011;56:672–7.CrossRefGoogle Scholar
  23. 23.
    Ping L, Hsieh YL. Cellulose isolation and core-shell nanostructures of cellulose nanocrystals from chardonnay grape skins. Carbohydr Polym. 2012;87:2546–53.CrossRefGoogle Scholar
  24. 24.
    Canam T, Park JY, Yu K, Campbell M, Ellis D, Mansfield S. Varied growth, biomass and cellulose content in tobacco expressing yeast-derived invertases. Planta. 2006;224:1315–27.CrossRefGoogle Scholar
  25. 25.
    Frone AN, Chiulan I, Panaitescu DM, Nicolae CA, Ghiurea M, Galan A-M. Isolation of cellulose nanocrystals from plum seed shells, structural and morphological characterization. Mater Lett. 2017;194:160–3.CrossRefGoogle Scholar
  26. 26.
    Kürschner K, Hoffer A. Ein neues Verfahren zur Bestimmung der Cellulose in Hölzern und Zellstoffen. Techn. Chem. Papier und Zellstoff. Fabr. 1929;26:125–129 in Kacik Fr and Solar R. 1999. Analyticka Chemia Dreva (Analytical Chemistry of Wood). Technicka univerzita vo Zvolene. ISBN 80-228-0882-0.Google Scholar
  27. 27.
    Acid-insoluble lignin in wood and pulp (reaffirmation of TAPPI Test Method T 222 om-02). http://www.tappi.org/content/SARG/T222.pdf.
  28. 28.
    Wise LE, Murphy M, D’Addieco AA. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade J. 1946;122:35–43.Google Scholar
  29. 29.
    Arrieta MP, López J, Hernández A, Rayón E. Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. Eur Polym J. 2014;50:255–70.CrossRefGoogle Scholar
  30. 30.
    Battegazzore D, Frache A, Abt T, Maspoch ML. Epoxy coupling agent for PLA and PHB copolymer-based cotton fabric bio-composites. Composites Part B. 2018;148:188–97.CrossRefGoogle Scholar
  31. 31.
    Dasan YK, Bhat AH, Faiz A. Polymer blend of PLA/PHBV based bionanocomposites reinforcedwith nanocrystalline cellulose for potential application as packaging material. Carbohydr Polym. 2017;157:1323–32.CrossRefGoogle Scholar
  32. 32.
    Reddy JP, Rhim JW. Isolation and characterization of cellulose nanocrystals from garlic skin. Mater Lett. 2014;129:20–3.CrossRefGoogle Scholar
  33. 33.
    El Achaby M, El Miri N, Hannache H, Gmouh S, Youcef HB, Aboulkas A. Production of cellulose nanocrystals from vine shoots and their use for the development of nanocomposite materials. Int J Biol Macromol. 2018;117:592–600.CrossRefGoogle Scholar
  34. 34.
    Anbukarasu P, Sauvageau D, Elias A. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting. Sci Rep. 2015;5:17884.CrossRefGoogle Scholar
  35. 35.
    Panaitescu DM, Nicolae CA, Frone AN, Chiulan I, Stanescu PO, Draghici C, Iorga M, Mihailescu M. Plasticized poly(3-hydroxybutyrate) with improved melt processing and balanced properties. J Appl Polym Sci. 2017.  https://doi.org/10.1002/app.44810.Google Scholar
  36. 36.
    Arrieta MP, Castro-López MM, Rayón E, Barral-Losada LF, López-Vilariño JM, López J, González-Rodríguez MV. Plasticized poly(lactic acid)–poly(hydroxybutyrate) (PLA–PHB) blends incorporated with catechin intended for active food-packaging applications. J Agric Food Chem. 2014;62:10170–80.  https://doi.org/10.1021/jf5029812.CrossRefGoogle Scholar
  37. 37.
    Malmir S, Montero B, Rico M, Barral L, Bouza R. Morphology, thermal and barrier properties of biodegradable films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing cellulose nanocrystals. Composites Part A. 2017;93:41–8.CrossRefGoogle Scholar
  38. 38.
    Abdelwahab MA, Flynn A, Chiou BS, Imam S, Orts W, Chiellini E. Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym Degrad Stab. 2012;97:1822–8.CrossRefGoogle Scholar
  39. 39.
    Bragg WH, Bragg WL. The reflexion of X-rays by crystals. Proc R Soc Lond Ser A. 1913;88:428–38.CrossRefGoogle Scholar
  40. 40.
    Frone AN, Panaitescu DM, Chiulan I, Nicolae CA, Vuluga Z, Vitelaru C, Damian CM. The effect of cellulose nanofibers on the crystallinity and nanostructure of poly(lactic acid) composites. J Mater Sci. 2016;51:9771–91.CrossRefGoogle Scholar
  41. 41.
    Panaitescu DM, Casarica A, Stanescu PO, Iorga MD, Purcar V, Florea D, Radovici C, Frone AN. Comparative analysis of bacterial and microcrystalline celluloses as reinforcements for poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Mater Plast. 2013;50:236–40.Google Scholar
  42. 42.
    Khakalo A, Filpponen I, Rojas OJ. Protein-mediated interfacial adhesion in composites of cellulose nanofibrils and polylactide: enhanced toughness towards material development. Compos Sci Technol. 2018;160:145–51.CrossRefGoogle Scholar
  43. 43.
    Hassaini L, Kaci M, Touati N, Pillin I, Kervoelen A, Bruzaud S. Valorization of olive husk flour as a filler for biocomposites based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate): effects of silane treatment. Polym Test. 2017;59:430–40.CrossRefGoogle Scholar
  44. 44.
    Negawoa TA, Polata Y, Buyuknalcacia FN, Kilica A, Sabae N, Jawaide M, Tolera A. Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester. Compos Struct. 2019;207:589–97.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Adriana Nicoleta Frone
    • 1
    Email author
  • Denis Mihaela Panaitescu
    • 1
  • Ioana Chiulan
    • 1
  • Augusta Raluca Gabor
    • 1
  • Cristian Andi Nicolae
    • 1
  • Madalina Oprea
    • 1
  • Marius Ghiurea
    • 1
  • Dan Gavrilescu
    • 2
  • Adrian Catalin Puitel
    • 2
  1. 1.Polymer DepartmentNational Institute for Research and Development in Chemistry and Petrochemistry ICECHIMBucharestRomania
  2. 2.Natural and Synthetic Polymers/Pulp and Paper Technology Group, Faculty of Chemical Engineering and Environmental Protection“Gheorghe Asachi” Technical University of IasiIasiRomania

Personalised recommendations