Advertisement

Thermal decomposition of bromine gordaite: NaZn4(OH)6(SO4)Br·6H2O

  • Zlatka DelchevaEmail author
  • Tsveta Stanimirova
  • Nadia Petrova
  • Elena Tacheva
Article
  • 10 Downloads

Abstract

A new compound, NaZn4(OH)6(SO4)Br·6H2O named “Br-gordaite”, was obtained by mixing of ZnO with a solution of ZnSO4 and NaBr. The Br ion occupies the Cl ion tetrahedral position of the brucite-like layer of the gordaite structure without any other changes relating to the structure and chemical composition. The thermal decomposition of the new phase was studied by DSC–TG(DTG)–MS in regard to the thermal events and mass loss during volatile releasing, while phase composition and chemical composition of the initial and heating products were studied by XRD and SEM–EDAX, respectively. All processes are endothermic: (1) dehydration (20–185 °C), (2) dehydroxylation (185–320 °C), (3) evolving of bromine (400–600 °C) and (4) evolving of SO3 (770–1165 °C). One-stage releasing of bromine from the “Br-gordaite” was observed at 400–600 °C. Bromine-containing intermediate crystalline phases were not detected by XRD during the “Br-gordaite” decomposition. The presence of bromine in the solid residue at 340 °C was established by chemical analysis, while after 600 °C the bromine was no longer present. The final products of the thermal decomposition of “Br-gordaite” are ZnO and traces of Na2Zn(SO4)2. The thermal behavior and the obtained thermal decomposition products of the “Br-gordaite” were compared with other minerals with Zn octahedral–tetrahedral hydroxide layer.

Keywords

Bromine gordaite Thermal decomposition DSC–TG–MS XRD SEM–EDAX 

Notes

References

  1. 1.
    Bevins RE, Turgoose S, Williams PA. Namuwite, (Zn,Cu)4SO4(OH)6·4H2O, a new mineral from Wales. Mineral Mag. 1982;46:51–4.CrossRefGoogle Scholar
  2. 2.
    Ohnishi M, Kusachi I, Kobayashi S. Osakaite, Zn4SO4(OH)6·5H2O, a new mineral species from the Hirao mine, Osaka, Japan. Can Mineral. 2007;45:1511–7.CrossRefGoogle Scholar
  3. 3.
    Nasdala L, Witzke T, Ullrich B, Brett R. Gordaite [Zn4Na(OH)6(SO4)Cl·6H2O]: second occurrence in the Juan de Fuca Ridge, and new data. Am Mineral. 1988;83:1111–6.CrossRefGoogle Scholar
  4. 4.
    Ts Stanimirova. Crystal chemical preconditions for the species diversity of minerals-hydroxy-salts. Geosciences. 2017;2017:35–6.Google Scholar
  5. 5.
    Groat LA. The crystal structure of namuwite, a mineral with Zn in tetrahedral and octahedral coordination, and its relationship to synthetic basic zinc sulfates. Am Mineral. 1996;81:238–43.CrossRefGoogle Scholar
  6. 6.
    Adiwidjaja G, Frise K, Klaska K-H, Schlüter J. The crystal structure of gordaite NaZn4(SO4)(OH)6Cl·6H2O. Z Kristallogr. 1997;212:704–7.Google Scholar
  7. 7.
    Hawthorne FC, Schindler M. Topological enumeration of decorated [Cu2+ф2]N sheets in hydroxy-hydrated copper oxysalt minerals. Can Mineral. 2000;38:751–61.CrossRefGoogle Scholar
  8. 8.
    Stanimirova T, Petrova N, Kirov G. Thermal decomposition of zinc hydroxyl-sulfate-hydrate minerals. J Therm Anal Calorim. 2016;125(1):85–96.CrossRefGoogle Scholar
  9. 9.
    Volovitch P, Allely C, Ogle K. Understanding corrosion via corrosion product characterization: I. Case study of the role of Mg-alloying in Zn–Mg coating on steel. Corros Sci. 2009;51:1251–62.CrossRefGoogle Scholar
  10. 10.
    Hongo T, Lemur TS, Satokawa S, Yamazaki A. Chromate adsorption and pH buffering capacity of zinc hydroxy salts. Appl Clay Sci. 2010;48:455–9.CrossRefGoogle Scholar
  11. 11.
    Peng HE, Gao X-D, Wu L-B, Jiang Z-W, Wang C-L, Li X-M. Porous ZnO sheets transformed from zinc sulfate hydroxide hydrate and their photoluminescence performance. Acta Phys Chem Shin. 2013;29:874–80.Google Scholar
  12. 12.
    Moezzi A, Cortie MB, McDonagh AM. Zinc hydroxide sulfate and its transformation to crystalline zinc oxide. Dalton Trans. 2013;42:14432–7.CrossRefGoogle Scholar
  13. 13.
    Liang W, Li W, Chen H, Liu H, Zhu L. Exploring electrodeposited flower-like Zn4(OH)6SO4·4H2O nanosheets as a precursor for porous ZnO nanosheets. Electrochim Acta. 2015;156:171–8.CrossRefGoogle Scholar
  14. 14.
    Gorodylova N, Cousy S, Sulcova P, Svoboda L. Thermal transformation of layered zinc hydroxide chloride: a review. J Therm Anal Calorim. 2017;127:675–83.CrossRefGoogle Scholar
  15. 15.
    Kozawa T, Onda A, Yanagisawa K, Kishi A, Masuda Y. Effect of water vapor on the thermal decomposition process of zinc hydroxide chloride and crystal growth of zinc oxide. J Solid State Chem. 2011;184:589–96.CrossRefGoogle Scholar
  16. 16.
    Kołodziejczak-Radzimska A, Jesionowski T. Zinc oxide—from synthesis to application: a review. Materials. 2014;7:2833–81.CrossRefGoogle Scholar
  17. 17.
    Arulraj J, Rajamathi JT, Prabhu KR, Rajamathi M. Anionic clays as hosts for anchored synthesis: interlayer bromination of maleate and fumarate ions in nickel-zinc layered hydroxy double salt. Solid State Sci. 2007;9:812–6.CrossRefGoogle Scholar
  18. 18.
    Tahir R, Banert K, Solhy A, Sebti S. Zinc bromide supported on hydroxyapatite as a new and efficient solid catalyst for Michael addition of indoles to electron-deficient olefins. J Mol Catal A Chem. 2006;246:39–42.CrossRefGoogle Scholar
  19. 19.
    Joshi G, Patil RD, Adimurthy S. Green bromine: in situ generated catalyst for the selective oxidation of alcohols using H2O2 as a benign oxidant. RSC Adv. 2012;2:2235–9.CrossRefGoogle Scholar
  20. 20.
    Petkova V, Kostova B, Shopska M, Kadinov G, Baláž M, Baláž P. Behavior of high-energy-milling-activated eggshells during thermal treatment. J Therm Anal Calorim. 2017;127(1):615–23.CrossRefGoogle Scholar
  21. 21.
    Lin Y, Zheng M, Ye C, Power I. Thermogravimetric analysis–mass spectrometry (TG–MS) of hydromagnesite from Dujiali Lake in Tibet, China. J Therm Anal Calorim. 2018;133:1429–37.CrossRefGoogle Scholar
  22. 22.
    Varga J, Wohlfahrt S, Fischer M, Saraji-Bozorgzad M, Matuschek G, Denner T, Reller A, Zimmermann R. An evolved gas analysis method for the characterization of sulfur vapor. J Therm Anal Calorim. 2017;127:955–60.CrossRefGoogle Scholar
  23. 23.
    Hribar B, Southall NT, Vlachy V, Dill KA. How ions affect the structure of water. J Am Chem Soc. 2002;124(41):12302–11.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Zlatka Delcheva
    • 1
    Email author
  • Tsveta Stanimirova
    • 2
  • Nadia Petrova
    • 1
  • Elena Tacheva
    • 1
  1. 1.Institute of Mineralogy and CrystallographyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Mineralogy, Petrology and Economic Geology, Faculty of Geology and GeographyUniversity of Sofia ‘‘St. Kliment Ohridski’’SofiaBulgaria

Personalised recommendations