Advertisement

Radiochemical stability and lifetime of HDPE-based flexible composite filled with Ce-doped PbZrTiO3

  • T. ZaharescuEmail author
  • A. Dumitru
  • V. Marinescu
  • G. Velciu
  • D. Panaitescu
  • G. Sbarcea
Article
  • 5 Downloads

Abstract

This paper presents the stabilization effects of inorganic filler, cerium-doped lead zirconate titanate on high-density polyethylene. The filler was loaded in two concentrations (1 and 3 wt%). The dopant contents in PbZrO3 were 0, 0.05, 0.075, 0.1 and 0.125 mol%. The degradation of hybrid samples was accomplished by γ-irradiation at various doses up to 200 kGy. The isothermal and nonisothermal chemiluminescence (CL) and thermal analysis (TG-DSC) were applied for the thermal stability characterization of modified HDPE samples. The mechanistic considerations and radiochemical consequences caused by the variation of filler concentration and doping level are discussed. The results demonstrate that the filler acts efficiently as stabilizer at low concentration of additive when the lower filler amount is present. The start of degradation precedes melting by four processes through which the chain scission and radical oxidation represent the essential degradation stage. The filler concentration influences the degradation due to the intimate interaction between solid-state defects and free radicals. The polymer protection against oxidation is based on the scavenging of radicals by the doping elements, that is, they trap and block radicals delaying material aging. The present results open a new perspective in the quality amelioration of organic products toward high durability.

Keywords

HDPE Lead zirconate titanate Stabilization Gamma irradiation 

Notes

Supplementary material

10973_2019_8216_MOESM1_ESM.tif (91 kb)
The particle size distributions of the doped PbZrTiO3 compositions after calcining at 920 oC for 4 h and grinding for 13 hours (a) C1 (TIFF 90 kb)
10973_2019_8216_MOESM2_ESM.tif (92 kb)
The particle size distributions of the doped PbZrTiO3 compositions after calcining at 920 oC for 4 h and grinding for 13 hours (b) C 2 (TIFF 91 kb)
10973_2019_8216_MOESM3_ESM.tif (87 kb)
The particle size distributions of the doped PbZrTiO3 compositions after calcining at 920 oC for 4 h and grinding for 13 hours (c) C 3 (TIFF 87 kb)
10973_2019_8216_MOESM4_ESM.tif (92 kb)
The particle size distributions of the doped PbZrTiO3 compositions after calcining at 920 °C for 4 h and grinding for 13 hours (d) C 4 (TIFF 91 kb)
10973_2019_8216_MOESM5_ESM.tif (83 kb)
Isothermal CL spectra recorded on HDPE containing two concentrations of PbZrTiO3 and different doping degrees (a) doping level: 0.005 M: (○) filler concentration 1%, (•) filler concentration 3% (TIFF 82 kb)
10973_2019_8216_MOESM6_ESM.tif (77 kb)
Isothermal CL spectra recorded on HDPE containing two concentrations of PbZrTiO3 and different doping degrees (b) doping level: 0.125 M: (□) filler concentration 1%, (■) filler concentration 3% (TIFF 76 kb)
10973_2019_8216_MOESM7_ESM.tif (154 kb)
Nonisothermal CL spectra drawn for HDPE modified with Ce-doped PbTiZrO3 3%. Heating rate: 10 oC min-1. Irradiation dose: 50 kGy (TIFF 153 kb)
10973_2019_8216_MOESM8_ESM.tif (321 kb)
TG/DSC curves recorded on HDPE/Ce-doped PbZrTiO3 (P 3) exposed to different γ-irradiation doses (a) 0 kGy (TIFF 321 kb)
10973_2019_8216_MOESM9_ESM.tif (299 kb)
TG/DSC curves recorded on HDPE/Ce-doped PbZrTiO3 (P 3) exposed to different γ-irradiation doses (b) 50 kGy (TIFF 299 kb)
10973_2019_8216_MOESM10_ESM.tif (297 kb)
TG/DSC curves recorded on HDPE/Ce-doped PbZrTiO3 (P 3) exposed to different γ-irradiation doses (c) 100 kGy (TIFF 296 kb)
10973_2019_8216_MOESM11_ESM.tif (280 kb)
TG/DSC curves recorded on γ-irradiated HDPE/Ce-doped PbZrTiO3 dose: 100 kGy (a) P 1 (TIFF 279 kb)
10973_2019_8216_MOESM12_ESM.tif (280 kb)
TG/DSC curves recorded on γ-irradiated HDPE/Ce-doped PbZrTiO3 dose: 100 kGy (b) P 4 (TIFF 280 kb)
10973_2019_8216_MOESM13_ESM.docx (19 kb)
Thermal parameters for HDPE filled with Ce-doped PbZrTiO3. Filler concentration: 3 wt% (DOCX 18 kb)

References

  1. 1.
    Farooqui UR, Ahmad AL, Hamid NA. Challenges and potential advantages in lithium air batteries: a review. Renew Sustain Energy Rev. 2017;7:1114–29.  https://doi.org/10.1016/j.rser.2016.11.220.CrossRefGoogle Scholar
  2. 2.
    Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang XG. A review of recent development in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci. 2014;2014(7):3857–86.  https://doi.org/10.1039/c4ee01432d.CrossRefGoogle Scholar
  3. 3.
    Peighambardoust SJ, Rowshanzamir S, Amjadi M. Review on the proton exchange membranes for fuel cell applications. Int J Hydrog Energy. 2010;35:9349–84.  https://doi.org/10.1016/j.ijhydene.2010.05.017.CrossRefGoogle Scholar
  4. 4.
    Wang Y, Chen KS, Mishler J, Cho SC, Cordobes Adroher X. A review of polymer electrolyte membrane fuel cells: technology, applications and needs on fundamental research. Appl Energy. 2011;88:981–1007.  https://doi.org/10.1016/j.apenergy.2010.09.030.CrossRefGoogle Scholar
  5. 5.
    Wright JS, Johnson ER, DiLabio GA. Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc. 2001;123:1173–83.  https://doi.org/10.1021/ja002455u.CrossRefGoogle Scholar
  6. 6.
    Klemchuk PP, Gande ME. Stabilization mechanisms of hindered amines. Macromol Symp. 1989;28:117–44.  https://doi.org/10.1002/masy.19890280110.CrossRefGoogle Scholar
  7. 7.
    Beissmann S, Reisinger M, Grabmayer K, Wallner G, Nithsche D, Buchberger W. Analytical evaluation of the performances of stabilization systems for polyolefinic materials. Part I. Interactions between hindered amine light stabilizers and phenolic antioxidants. Polym Degrad Stab. 2014;110:498–508.  https://doi.org/10.1016/j.polymdegradstab.2014.09.020.CrossRefGoogle Scholar
  8. 8.
    Pospíšil J, Nešpůrek S. Chain-breaking stabilizers in polymers: the current status. Polym Degrad Stab. 1995;49:99–110.  https://doi.org/10.1016/0141-3910(95)00043-L.CrossRefGoogle Scholar
  9. 9.
    Burnea LC, Zaharescu T, Dumitru A, Pleşa I, Dumitru F. Radiation stability of polypropylene/lead zirconate composites. Radiat Phys Chem. 2014;94:156–60.  https://doi.org/10.1016/j.radphyschem.2013.06.028.CrossRefGoogle Scholar
  10. 10.
    Zaharescu T, Dumitru A, Lungulescu ME, Velciu G. EPDM composite membranes modified with cerium doped zirconate titanate. Radiat Phys Chem. 2016;118:133–7.  https://doi.org/10.1016/j.radphyschem.2015.03.022.CrossRefGoogle Scholar
  11. 11.
    Klick CC. Properties of electron centers. ch. 5. In: Crawford JH, Sligkin LM, editors. Point defects in solids, vol. 1., General and ionic crystalsNew York: Plenum Press; 1972. p. 291–326.CrossRefGoogle Scholar
  12. 12.
    Jipa S, Setnescu R, Setnescu T, Zaharescu T. Efficiency assessment of additives in thermal degradation of i-PP by chemiluminescence. Part I. Triazines. Polym Degrad Stab. 2000;68:159–64.  https://doi.org/10.1016/S0141-3910(99)00180-9.CrossRefGoogle Scholar
  13. 13.
    Zaharescu T, Pielikowski K. Stabilization effect of POSS nanoparticles on gamma-irradiated polyurethanes. J Therm Anal Calorim. 2015;122:251–9.  https://doi.org/10.1007/s10973-015-5191-y.CrossRefGoogle Scholar
  14. 14.
    Kim Y-S, Seo K-S, Choi S-H. Polymeric nanocomposite proton exchange membrane by radiation-induced polymerization for direct methanol fuel cell. Radiat Phys Chem. 2016;118:35–41.  https://doi.org/10.1016/j.radphyschem.2015.05.011.CrossRefGoogle Scholar
  15. 15.
    Bagheri E, Ansari L, Seyed KA, Taghdisi M, Charbogoo F, Ramezani M, Alibolandi M. Silica based hybrid materials for drug delivery and bioimaging. J Control Release. 2018;277:57–63.  https://doi.org/10.1016/j.conrel.2018.03.0145.CrossRefGoogle Scholar
  16. 16.
    Tarani E, Terzopoulou Z, Bikiaris DN, Kyratsi Th, Chrissafis K. Thermal conductivity and degradation behavior of HDPE/graphene nanocomposites. J Therm Anal Calorim. 2017;129:1715–26.  https://doi.org/10.1007/s10973-017-6342-0.CrossRefGoogle Scholar
  17. 17.
    Cimmino S, Di Pace E, Martuscelli E, Silvestre C, Mendes C, Bonfanti I. High density polyethylene/hydrogenated oligo(cyclopentane) blends: tensile stress–strain behavior. J Polym Sci Part B Polym Phys. 1995;33:1723–30.  https://doi.org/10.1002/polb.1995.090331203.CrossRefGoogle Scholar
  18. 18.
    Gonnard P, Troccaz M. Dopant distribution between A and B in the PZT ceramics of type ABO3. J Solid State Chem. 1978;23:321–6.  https://doi.org/10.1016/0022-4596(78)90080-4.CrossRefGoogle Scholar
  19. 19.
    Majumder SB, Agrawal DC, Mohapatra YN, Katiyar RS. Effect of cerium doping on the mocro-structure and electrical properties of sol–gel derived Pb1.5(Zr0.53-δCeδTi0.47)O3δ ≤ at.%) thin films. Mater Sci Eng B. 2003;98:25–32.  https://doi.org/10.1016/S0921-5107(02)00596-2.CrossRefGoogle Scholar
  20. 20.
    Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystrallogr. 1976;A32:751–67.  https://doi.org/10.1107/S0567739476001551.CrossRefGoogle Scholar
  21. 21.
    Nag SK, Agrawal DC. Piezoelectric and mechanical properties of ceria-doped lead zirconate titanate ceramics. J Mater Sci. 1992;27:4125–30.  https://doi.org/10.1107/BF01105115.CrossRefGoogle Scholar
  22. 22.
    Velciu G, Melinescu A, Marinescu V, Preda M. LaCoO3 synthesis by intensive mechanical activation. Ceram Int. 2015;41:6876–81.  https://doi.org/10.1016/j.ceramint.2015.01.6881.CrossRefGoogle Scholar
  23. 23.
    Grigoriadou I, Pavlidou E, Paraskevopoulos M, Terzopoulou Z, Bikiaris DN. Comparative study on the photochemical stability of HDPE/Ag composites. Polym Degrad Stab. 2018;153:23–6.  https://doi.org/10.1007/s10973-017-6342681-x.CrossRefGoogle Scholar
  24. 24.
    Hkedri S, Elyasi S. Determination of the heat of pyrolysis of HDPE via isothermal differential scanning calorimetry. J Therm Anal Calorim. 2018;131:1509–15.  https://doi.org/10.1016/j.polymdegradstab.2018.04.016.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • T. Zaharescu
    • 1
    Email author
  • A. Dumitru
    • 1
  • V. Marinescu
    • 1
  • G. Velciu
    • 1
  • D. Panaitescu
    • 2
  • G. Sbarcea
    • 1
  1. 1.INCDIE ICPE CABucharestRomania
  2. 2.INCDCP-ICECHIMBucharestRomania

Personalised recommendations