An experimental investigation of heat of vaporization of nanofluids

  • Zahra BaniamerianEmail author
  • Ramin Mehdipour
  • S. M. Sohel Murshed


This paper is devoted to measurement and prediction of the saturated flow boiling of nanofluids. In this regard, pressure–temperature variations at saturation conditions are experimentally investigated for different types of water-based nanofluids with variable volume fractions of nanoparticles. By using measured saturation temperature/pressure data as well as Clasius–Clapeyron equation, latent heat of evaporation (LHE) of nanofluids is determined and compared with that of pure water. Results of this study reveal that addition of nanoparticles to water can increase or decrease LHE depending on the type and concentration of nanoparticles and the saturation temperature. A maximum 48.7% increase in the LHE of water is achieved by adding 0.3 vol% of TiO2 nanoparticles. Based on the experimental data, a correlation for the prediction of LHE of nanofluids is also proposed.


Latent heat of evaporation Nanofluid Saturated pressure Saturation temperature Nanoparticles 

List of symbols


Coefficient as a function of concentration of nanoparticle


Latent heat (kJ kg−1)


Saturation vapor pressure (Pa)


Ideal gas constant of steam (kJ kg−1 K)


Saturation temperature (K)


Boiling point (K)


Specific volume of saturated liquid (m3)


Specific volume of saturated vapor (m3)

\(\Delta V\)

Volume change (m3)

Greek symbols


Density (kg m−3)


Volume concentration of nanoparticles (%)



Saturated liquid


Saturated vapor







Thanks to the Tafresh University for the experimental setup.


  1. 1.
    Choi S, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. In: ASME international mechanical engineering congress and exposition, San Francisco, CA; 1995.Google Scholar
  2. 2.
    Collier JG, Thome JR. Convective boiling and condensation. Oxford: Clarendon Press-Oxford; 1996.Google Scholar
  3. 3.
    Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78:718–20.CrossRefGoogle Scholar
  4. 4.
    Eastman JA, Choi SUS, Li S, Soyez G, Thompson LJ, Dimelfi RJ. Novel thermal properties of nanostructured materials. Mater Sci Forum. 1999;312–314:629–34.CrossRefGoogle Scholar
  5. 5.
    Murshed SMS, Leong KC, Yang C. Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci. 2005;44:367–73.CrossRefGoogle Scholar
  6. 6.
    Murshed SMS, Leong KC, Yang C. Thermophysical and electrokinetic properties of nanofluids: a critical review. Appl Therm Eng. 2008;28:2109–25.CrossRefGoogle Scholar
  7. 7.
    Murshed SMS. Simultaneous measurement of thermal conductivity, thermal diffusivity, and specific heat of nanofluids. Heat Transf Eng. 2012;33:722–31.CrossRefGoogle Scholar
  8. 8.
    Murshed SMS, Leong KC, Yang C. Investigation of thermal conductivity and viscosity of nanofluids. Int J Therm Sci. 2008;47(2008):560–8.CrossRefGoogle Scholar
  9. 9.
    Murshed SMS, Nieto de Castro CA. Nanofluids: synthesis, properties and applications. New York: Nova Science Publishers Inc.; 2014.Google Scholar
  10. 10.
    Murshed SMS, Estellé P. A state of the art review on viscosity of nanofluids. Renew Sustain Energy Rev. 2017;76:1134–52.CrossRefGoogle Scholar
  11. 11.
    Park KJ, Jung D. Enhancement of nucleate boiling heat transfer using carbon nanotubes. Int J Heat Mass Transf. 2007;50:4499–502.CrossRefGoogle Scholar
  12. 12.
    Baniamerian Z. Analytical modeling of boiling nanofluids. J Thermophys Heat Transf. 2017;31(1):136–45.CrossRefGoogle Scholar
  13. 13.
    Azimi H, Baniamerian Z. Effects of nanoparticles deposition on thermal behaviour of boiling nanofluids. Heat Mass Transf. 2018. Scholar
  14. 14.
    Zeinal Heris S, Naser Esfahani M, Etemad S. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow. 2007;28:203–10.CrossRefGoogle Scholar
  15. 15.
    Henderson K, Park YG, Liu L, Jacobi A. Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube. Int J Heat Mass Transf. 2010;53:944–51.CrossRefGoogle Scholar
  16. 16.
    Xuan Y, Li Q. Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf. 2003;125:151–5.CrossRefGoogle Scholar
  17. 17.
    Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf. 2004;47:5181–8.CrossRefGoogle Scholar
  18. 18.
    Heris SZ, Etemad SG, Esfahany MS. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf. 2006;33:529–35.CrossRefGoogle Scholar
  19. 19.
    Chehade AA, Gualous HL, Masson SL, Fardoun F, Besq A. Boiling local heat transfer enhancement in minichannels using nanofluids. Nanoscale Res Lett. 2013;8:130–50.CrossRefGoogle Scholar
  20. 20.
    Ahn HS, Kim H, Jo H, Kang S, Chang W, Kim MH. Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface. Int J Multiph Flow. 2010;36(5):375–84.CrossRefGoogle Scholar
  21. 21.
    Kim TL, Jeong YH, Chang SH. An experimental study on CHF enhancement in flow boiling using Al2O3 nano-fluid. Int J Heat Mass Transf. 2010;53:1015–22.CrossRefGoogle Scholar
  22. 22.
    Seung L, Seong P, Sa K, Seong K, Han S, Dong L. Critical heat flux enhancement in flow boiling of Al2O3 and SiC nanofluids under low pressure and low flow conditions. Nucl Eng Technol. 2012;44(4):429–36.CrossRefGoogle Scholar
  23. 23.
    Song S, Lee JH, Chang SH. CHF enhancement of SiC nanofluid in pool boiling experiment. Exp Thermal Fluid Sci. 2014;52:12–8.CrossRefGoogle Scholar
  24. 24.
    Garai J. Physical model for vaporization. Fluid Phase Equilib. 2009;283:89–92.CrossRefGoogle Scholar
  25. 25.
    Zhu L, Gu Q, Sun P, Chen W, Wang X, Xue G. Characterization of the mobility and reactivity of water molecules on TiO2 nanoparticles by 1H solid-state nuclear magnetic resonance. ACS Appl Mater Interfaces. 2013;5:10352–6.CrossRefGoogle Scholar
  26. 26.
    Tarasevich YI. State and structure of water in vicinity of hydrophobic surfaces. Colloid J. 2011;73:257–66.CrossRefGoogle Scholar
  27. 27.
    Israelachvili JN. Intermolecular and surface forces. 3rd ed. Cambridge: Academic Press; 2011.Google Scholar
  28. 28.
    Chen XJ, Levi AC, Tosatti EH. Hamaker constant calculations and surface melting of metals. Surf Sci. 1991;251(252):641–4.CrossRefGoogle Scholar
  29. 29.
    Tso CY, Chao CYH. Study of enthalpy of evaporation, saturated vapor pressure and evaporation rate of aqueous nanofluids. Int J Heat Mass Transf. 2015;84:931–41.CrossRefGoogle Scholar
  30. 30.
    Aslani B, Moghiman M. The sixth joint conference of iranian metallurgical engineering society and Iranian foundry men’s society, University of Tehran, December; 2012.Google Scholar
  31. 31.
    Ameen MM, Prabhul K, Sivakumar G, Abraham PP, Jayadeep UB, Sobhan CB. Molecular dynamics modeling of latent heat enhancement in nanofluds. Int J Thermophys. 2010;31:131–1144.CrossRefGoogle Scholar
  32. 32.
    Mehregan M, Moghiman M. Propose a correlation to approximate nanofluid enthalpy of vaporization: a numerical study. Int Mater Mech Manuf. 2014;2(1):73–6.Google Scholar
  33. 33.
    Lee S, Phelan PE, Dai L, Prasher R, Gunawan A, Taylor RA. Experimental investigation of the latent heat of vaporization in aqueous nanofluids. Appl Phys Lett. 2014;104:151908.CrossRefGoogle Scholar
  34. 34.
    Baniamerian Z, Mashayekhi M. Experimental assessment of saturation behavior of boiling nanofluids; pressure and temperature. J ThermoPhys Heat Transf. 2017;31(3):732–8. Scholar
  35. 35.
    Zhu D, Wu S, Wang N. Thermal physics and critical heat flux characteristics of Al2O3–H2O nanofluids. Heat Transf Eng. 2010;31(14):1213–9.CrossRefGoogle Scholar
  36. 36.
    Chen RH, Phuoc TX, Martello D. Effects of nanoparticales on nanofluid droplet evaporation. Int J Heat Mass Transf. 2010;53:3677–82.CrossRefGoogle Scholar
  37. 37.
    Baniamerian Z, Mehdipour R, Aghanajafi C. Analytical simulation of annular two-phase flow considering the four involved mass transfers. J Fluids Eng TASME. 2012;134:081301.CrossRefGoogle Scholar
  38. 38.
    Moffat RJ. Describing the uncertainties in experimental results. Exp Thermal Fluid Sci. 1988;1:3–17.CrossRefGoogle Scholar
  39. 39.
    Cengel YA, Boles MA. Thermodynamics: an engineering approach. 8th ed. New York: McGraw-Hill; 2015.Google Scholar
  40. 40.
    American Society of Heating, Refrigerating and Air-Conditioning Engineers. Ashrae handbook: fundamentals. inch-pound. Atlanta: ASHRAE; 2013.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Zahra Baniamerian
    • 1
    Email author
  • Ramin Mehdipour
    • 1
  • S. M. Sohel Murshed
    • 2
  1. 1.Department of Mechanical EngineeringTafresh UniversityTafreshIran
  2. 2.Department of Mechanical Engineering, Instituto Superior TécnicoUniversity of LisbonLisbonPortugal

Personalised recommendations