Advertisement

Thermal profile of 4,4′-dinitrocarbanilide determined by thermogravimetry–differential scanning calorimetry–mass spectrometry (TG–DSC–MS) and pyrolysis–gas chromatography–mass spectrometry (Py–GC–MS)

  • Danniele Miranda Bacila
  • Marcelo Lazzarotto
  • Fabrício Augusto Hansel
  • Gerson Neudí Scheuermann
  • Vivian FeddernEmail author
  • Anildo Cunha Junior
  • Luciana Igarashi-Mafra
Article
  • 25 Downloads

Abstract

Nicarbazin is an anticoccidial used in poultry production. Its residue of concern left in chicken meat is 4,4′-dinitrocarbanilide (DNC) whose content can be reduced through meat thermal processing. Thermal analysis techniques can be considered to elucidate how DNC degradation proceeds. This study aimed to investigate the thermal behavior of DNC using TG–DSC–MS and Py–GC–MS. TG–DSC–MS data showed that DNC decomposition occurs in a single step (252–280 °C) as an endothermic event (ΔH of 670 J g−1). Fragments detected at m/z 43, 44 and 65 indicated the release of isocyanic acid, carbon dioxide and 4-nitroaniline as breakdown products. In addition, Py–GC–MS analysis confirmed that DNC is thermally degraded above 250 °C generating 4-nitrophenyl isocyanate and 4-nitroaniline as the major pyrolysis products. Findings obtained from thermal analysis herein are useful to better comprehend the DNC disappearance after submitting chicken meat to heat processing.

Keywords

Thermal analysis Residue degradation Nicarbazin Anticoccidial Chicken meat Chemical residue 

Notes

Acknowledgements

This work was supported by the Brazilian Agricultural Research Corporation [Embrapa, Grant No. 03.16.05.004.00.00], National Council for Scientific and Technological Development [CNPq, Grant No. 306930/2016-1] and the Coordination for the Improvement of Higher Education Personnel [CAPES, Grant No. 1533827 to D.M.B.].

References

  1. 1.
    EC. Commission Regulation (EU) No 875/2010 of 5 October 2010 concerning the authorisation for 10 years of an additive in feedingstuffs. Off J Eur Union. 2010;263:4–6.Google Scholar
  2. 2.
    USA. Title 21—Food and Drugs. Chapter I—Food and Drug Administration, Department of Health and Human services. Subchapter E—animal drugs, feeds, and related products part 556—tolerances for residues of new animal drugs in food. Gov. Publ. Off. 2012.Google Scholar
  3. 3.
    Brasil. Tabela de aditivos antimicrobianos, anticoccidianos e agonistas com uso autorizado na alimentação animal. [Table of antimicrobial additives, anticoccidials and agonists with authorized use in animal feed]. BRAZIL—Ministry of Agriculture, Livestock and Food Supply. 2015. p. 9.Google Scholar
  4. 4.
    Blake DP, Tomley FM. Securing poultry production from the ever-present Eimeria challenge. Trends Parasitol. 2014;30:12–9.CrossRefGoogle Scholar
  5. 5.
    EFSA. Opinion of the scientific panel on additives and products or substances used in animal feed on a request from the Commission on the efficacy and safety of the coccidiostat Koffogran. EFSA J. 2003;16:1–40.Google Scholar
  6. 6.
    Clarke L, Fodey TL, Crooks SRH, Moloney M, O’Mahony J, Delahaut P, et al. A review of coccidiostats and the analysis of their residues in meat and other food. Meat Sci. 2014;97:358–74.CrossRefGoogle Scholar
  7. 7.
    BRASIL. Decreto No 9013 de 29 de março de 2017. Regulamenta a Lei no 1.283, de 18 de dezembro de 1950, e a Lei no 7.889, de 23 de novembro de 1989, que dispõem sobre a inspeção industrial e sanitária de produtos de origem animal. Brasília: MAPA; 2017. Available from: http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2017/Decreto/D9013.htm#art541. Accessed 17 Dec 2018.
  8. 8.
    FAO/WHO. Maximum residue limits (MRLs) and risk management recommendations (RMRs) for residues of veterinary drugs in foods. CAC/MRL 2-2017. Updated as at the 40th Session of the Codex Alimentarius Commission (July 2017). Rome; 2017.Google Scholar
  9. 9.
    Bacila DM, Feddern V, Mafra LI, Scheuermann GN, Molognoni L, Daguer H. Current research, regulation, risk, analytical methods and monitoring results for nicarbazin in chicken meat: a perspective review. Food Res Int. 2017;99:31–40.CrossRefGoogle Scholar
  10. 10.
    Moats WA. The effect of processing on veterinary residues in foods. In: Jackson LS, Knize MG, Morgan JN, editors. Impact of processing on food safety. New York: Kluwer Academic; 1999. p. 233–41.CrossRefGoogle Scholar
  11. 11.
    Bacila DM, Cunha A, Weber IF, Scheuermann GN, Coldebella A, Caron L, et al. Degradation of 4,4′-dinitrocarbanilide in chicken breast by thermal processing. J Agric Food Chem. 2018;66:8391–7.CrossRefGoogle Scholar
  12. 12.
    Tarbin JA, Bygrave J, Bigwood T, Hardy D, Rose M, Sharman M. The effect of cooking on veterinary drug residues in food: nicarbazin (Dinitrocarbanilide component). Food Addit Contam. 2005;22:1126–31.CrossRefGoogle Scholar
  13. 13.
    Morelli JJ. Thermal analysis using mass spectrometry: a review. J Anal Appl Pyrolysis. 1990;18:1–18.CrossRefGoogle Scholar
  14. 14.
    Yan HZ, Song C, Tg BÁ, Daem MSÁ. Thermal characteristics of bitumen pyrolysis. J Therm Anal Calorim. 2012;107:541–7.CrossRefGoogle Scholar
  15. 15.
    Xie W, Tan Z, Gu X, Tang J, Wang G, Luo C, et al. Thermal decomposition of two synthetic glycosides by TG, DSC and simultaneous Py-GC-MS analysis. J Therm Anal Calorim. 2007;87:505–10.CrossRefGoogle Scholar
  16. 16.
    Tian L. Thermal degradation of antibiotic residues: amphenicols as a case study. Montreal: McGill University; 2016.Google Scholar
  17. 17.
    Attia AK, Saad AS, Alaraki MS, Elzanfaly ES. Study of thermal analysis behavior of fenbendazole and rafoxanide. Adv Pharm Bull. 2017;7:329–34.CrossRefGoogle Scholar
  18. 18.
    Blake PG, Ijadi-Maghsoodi S. The kinetics and mechanism of thermal decomposition of alkyl isocyanates. Int J Chem Kinet. 1983;15:609–18.CrossRefGoogle Scholar
  19. 19.
    Carabias-Martínez R. Determination of herbicides, including thermally labile phenylureas, by solid-phase microextraction and gas chromatography–mass spectrometry. J Chromatogr A. 2003;1002:1–12.CrossRefGoogle Scholar
  20. 20.
    Peña F, Cárdenas S, Gallego M, Valcárcel M. Analysis of phenylurea herbicides from plants by GC/MS. Talanta. 2002;56:727–34.CrossRefGoogle Scholar
  21. 21.
    Chen JP, Isa K. Thermal decomposition of urea and urea derivatives by simultaneous TG/(DTA)/MS. J Mass Spectrom Soc Jpn. 1998;46:299–303.CrossRefGoogle Scholar
  22. 22.
    Skuches GS, Carleton PS. Correlation of urea structure with thermal stability in model compounds. J Appl Polym Sci. 1984;29:3431–43.CrossRefGoogle Scholar
  23. 23.
    Stradella L, Argentero M. A DSC, TG, IR study of the thermal decomposition of some alkyl- and aryl-ureas. Thermochim Acta. 1995;268:1–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Danniele Miranda Bacila
    • 1
  • Marcelo Lazzarotto
    • 2
  • Fabrício Augusto Hansel
    • 2
  • Gerson Neudí Scheuermann
    • 3
  • Vivian Feddern
    • 3
    Email author
  • Anildo Cunha Junior
    • 3
  • Luciana Igarashi-Mafra
    • 1
  1. 1.Departamento de Engenharia QuímicaUniversidade Federal do ParanáCuritibaBrazil
  2. 2.Embrapa FlorestasColomboBrazil
  3. 3.Embrapa Suínos e AvesConcórdiaBrazil

Personalised recommendations