Advertisement

Hydrolysis of the low gelatinization temperature Araucaria angustifolia pine seed starch

Thermal, rheological and structural properties
  • Geisa Liandra de Andrade de Siqueira
  • Ana Claudia da Silveira
  • Simone Rosa da Silveira Lazzarotto
  • Rossana Catie Bueno de Godoy
  • Egon Schnitzler
  • Marcelo LazzarottoEmail author
Article
  • 16 Downloads

Abstract

Starch is the most abundant carbohydrate found in grains, roots and tubers. Modified starches are employed to overcome most of native starch limitations in industrial applications. Pinhão is the seed of Araucaria angustifolia and starch is approximately 36% of its composition. Acid hydrolysis changes the starch physicochemical properties without impairing the granular structure. The native and hydrochloric acid- modified (0.1 and 0.5 mol L−1) pinhão starches were investigated using thermal (TG-DTA and DSC), rheological (RVA), structural (XRD and SEM) and statistical analysis (ANOVA and Tukey). The aim of this study was to evaluate the effects of acid modification of pinhão starches in aqueous solutions. The starches were chosen because of their low gelatinization temperature (below 60 °C). TG-DTA results in air atmosphere showed that treated samples presented higher thermal stability. The same analysis using nitrogen atmosphere showed similarities between the samples. DSC results indicate that highest acid concentrations promoted crystallinity reduction and losses in the internal structure of the granule. The genetic sources demonstrated different behaviors. The viscosity parameters decreased with the intensity of acid treatment. The XRD identified the type C pattern for the starches and the relative crystallinity increased according to the intensity of the acid hydrolysis. Superficial changes in the granules were observed by SEM. Therefore, modified pinhão starch has potential use for industrial applications. Further studies are necessary to extend these applications.

Keywords

Modified pinhão starch Thermal analysis TG-DTA DSC RVA Starch structural evaluation 

Notes

Acknowledgements

The authors would like to thank the Gregory P. Burke for the language correction of this manuscript. The authors express their sincere thanks to CAPES and CNPq (306930/2016-1) for the financial support during this work. Dr. Marcelo Lazzarotto and Dra. Rossana Catie Bueno de Godoi acknowledge the encouragement and support of EMBRAPA, Universidade Estadual de Ponta Grossa e Universidade Federal do Paraná in this work.

Supplementary material

10973_2019_8180_MOESM1_ESM.docx (56 kb)
Supplementary material 1 (DOCX 55 kb)

References

  1. 1.
    Koch Z, Corrêa MC. Araucária: a floresta do Brasil meridional. Curitiba: Olhar Brasileiro; 2002.Google Scholar
  2. 2.
    Bicudo SCW, Demiate IM, Bannach G, Lacerda LG, Carvalho Filho MAS, Ionashiro M, Schnitzler RE. Thermoanalytical study and characterization of native starches of Paraná pine seeds (Araucaria angustifolia, Bert O. Ktze) and European chestnut seeds (Castanea sativa, Mill). Eclét Quím. 2009.  https://doi.org/10.1590/S0100-46702009000100001.Google Scholar
  3. 3.
    Hung VP, Maeda T, Morita N. Study on physicochemical characteristics of waxy and high-amylose wheat starches in comparison with normal wheat starch. Starch/Stärke. 2007.  https://doi.org/10.1002/star.200600577.Google Scholar
  4. 4.
    Spada JC, Noreña CPZ, Marczak LDF, Tessaro IC. Water adsorption isotherms of microcapsules with hydrolyzed pinhão (Araucaria angustifolia seeds) starch as wall material. J Food Eng. 2013.  https://doi.org/10.1016/j.jfoodeng.2012.07.019.Google Scholar
  5. 5.
    Jimenez A, Fabra NJ, Talens P, Chiralt A. Edible and biodegradable starch films: a review. Food Bioprocess Technol. 2012.  https://doi.org/10.1007/s11947-012-0835-4.Google Scholar
  6. 6.
    Hornung PS, Lazzarotto SRS, Bellettini MB, Lazzarotto M, Beta T, Ribani RH, Schnitzler E. Novel oxidized and UV-irradiated pine seed starch for enhanced functional properties. Starch/Stärke. 2018.  https://doi.org/10.1002/star.201800140.Google Scholar
  7. 7.
    Wang YJ, Truong VD, Wang L. Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydr Polym. 2003.  https://doi.org/10.1016/S0144-8617(02)00323-5.Google Scholar
  8. 8.
    Aggarwal P, Dollimore D. A thermal analysis investigation of partially hydrolyzed starch. Thermochim Acta. 1998.  https://doi.org/10.1016/S0040-6031(98)00355-4.Google Scholar
  9. 9.
    Andrade MMP, Oliveira CS, Colman TAD, Costa FJOG, Schnitzler E. Effects of heat-moisture treatment on organic cassava starch. J Therm Anal Calorim. 2014.  https://doi.org/10.1007/s10973-013-3159-3.Google Scholar
  10. 10.
    Zortéa MEB, Demiate IM, Praxedes MA, Wosiacki G. Avaliação da viscosidade aparente de pastas de amidos nos viscosímetros brookfield RVDV-II + PRO e rápido visco-analisador RVA-4. Rev Bras Tecnol Agroind. 2011.  https://doi.org/10.3895/S1981-36862011000100008.Google Scholar
  11. 11.
    Thys RCS Jr., Westfahl H, Noreña CPZ, Marczak LDF, Silveira NP, Cardoso MB. Effect of the alkaline treatment on the ultrastructure of C-type starch granules. Biomacromol. 2008.  https://doi.org/10.1021/bm800143w.Google Scholar
  12. 12.
    Beninca C, Colman TAD, Lacerda LG, Filho MASC, Demiate IM, Bannach HG, Schnitzler E. Thermal, rheological, and structural behaviors of natural and modified cassava starch granules, with sodium hypochlorite solutions. J Therm Anal Calorim. 2013.  https://doi.org/10.1007/s10973-012-2592-z.Google Scholar
  13. 13.
    Costa FJOG, Leivas CL, Waszczynskyj N, De Godoi RCB, Helm CV, Colman TAD, Schnitzler E. Characterization of native starches of seeds of Araucaria angustifolia from four germplasm collections. Thermochim Acta. 2013.  https://doi.org/10.1016/j.tca.2013.04.030.Google Scholar
  14. 14.
    Siqueira GLA, Hornung PS, Lazzarotto SRS, Schnitzler E, Lazzarotto M. Efeito do processo de hidrólise ácida em amido na gelatinização visando à aplicação na indústria papeleira. In: Comunicado técnico (INFOTECA-E). Embrapa Florestas. 2016. http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1058278. Accessed 17 Sept 2018.
  15. 15.
    Ramos AP, Demiate IM, Schnitzler E, Bedin AC, Teliz-Romero J, Lopes-Filho JF. Morphological, thermal and physicochemical characteristics of small granules starch from Mirabilis jalapa L. Thermochim Acta. 2015.  https://doi.org/10.1016/j.tca.2015.01.001.Google Scholar
  16. 16.
    Hornung PS, Granza AG, Oliveira CS, Lazzarotto M, Schnitzler E. Study of the effects of ultraviolet light and sodium hypochlorite solutions on properties of cassava starch granules. Food Biophys. 2015.  https://doi.org/10.1007/s11483-015-9402-7.Google Scholar
  17. 17.
    Malucelli LC, Lacerda LG, Carvalho Filho MAS, Fernández DER, Demiate IM, Oliveira CS, Schnitzler E. Porous waxy maize starch: thermal, structural and viscographic properties of modified granules obtained by enzyme treatment. J Therm Anal Calorim. 2015.  https://doi.org/10.1007/s10973-015-4483-6.Google Scholar
  18. 18.
    Colman TAD, Demiate IM, Schnitzler E. The effect of microwave radiation on some thermal, rheological and structural properties of cassava starch. J Therm Anal Calorim. 2014.  https://doi.org/10.1007/s10973-012-2866-5.Google Scholar
  19. 19.
    Lacerda LG, Colman TAD, Bauab T, Carvalho Filho MAS, Demiate IV, Vasconcelos EC, Schnitzler E. Thermal, structural and rheological properties of starch from avocado seeds (Persea americana, Miller) modified with standard sodium hypochlorite solutions. J Therm Anal Calorim. 2014.  https://doi.org/10.1007/s10973-013-3349-z.Google Scholar
  20. 20.
    Di-Medeiros MCB, Pascoal AM, Batista KA, Bassinello PZ, Lião LM, Leles MIG, Fernandes KF. Rheological and biochemical properties of Solanum lycocarpum starch. Carbohydr Polym. 2014.  https://doi.org/10.1016/j.carbpol.2014.01.023.Google Scholar
  21. 21.
    Lacerda LG, Azevedo JAM, Carvalho Filho MAS, Demiate IM, Schnitzler E, Vanderberche LPS, Soccol CR. Thermal characterization of partially hydrolyzed cassava (Manihot esculenta) starch granules. Braz Arch Biol Technol. 2008.  https://doi.org/10.1590/S1516-89132008000600016.Google Scholar
  22. 22.
    Shin SI, Lee CJ, Kim MJ, Choi SJ, Choi HJ, Kim Y, Moon TW. Structural characteristics of low-glycemic response rice starch produced by citric acid treatment. Carbohydr Polym. 2009.  https://doi.org/10.1016/j.carbpol.2009.05.017.Google Scholar
  23. 23.
    Bet CD, Cordoba LP, Ribeiro LS, Schnitzler E. Common vetch (Vicia sativa) as a new starch source: its thermal, rheological and structural properties after acid hydrolysis. Food Biophys. 2016.  https://doi.org/10.1007/s11483-016-9439-2.Google Scholar
  24. 24.
    Cordoba LP, Bet CD, Schnitzler E. Study by thermal methods of pinhão starch modified with lactic acid. Carpathian J Food Sci Technol. 2015;7:41–7.Google Scholar
  25. 25.
    Chen R, Yi C, Wu H, Guo S. Degradation kinetics and molecular structure development of hydroxyethyl cellulose under the solid state mechanochemical treatment. Carbohydr Polym. 2010.  https://doi.org/10.1016/j.carbpol.2010.02.012.Google Scholar
  26. 26.
    Li X, Gao W, Huang L, Wang Y, Huang L, Liu C. Preparation and physicochemical properties of carboxymethyl Fritillaria ussuriensis Maxim. starches. Carbohydr Polym. 2010.  https://doi.org/10.1016/j.carbpol.2009.12.025.Google Scholar
  27. 27.
    Lawal OS, Adebowale KO, Ogunsanwo BM, Barba LL, Ilo NS. Oxidized and acid thinned starch derivatives of hybrid maize: functional characteristics, wide-angle X-ray diffractometry and thermal properties. Int J Biol Macromol. 2005;35:71–9.CrossRefGoogle Scholar
  28. 28.
    Hoover R, Vasanthan T. Effect of heat-moisture treatment on the structure and physicochemical properties of cereal, legume, and tuber starches. Carbohydr Res. 1994.  https://doi.org/10.1016/0008-6215(94)90004-3.Google Scholar
  29. 29.
    Babu AS, Parimalavalli R, Jagannadham K, Rao JS. Chemical and structural properties of sweet potato starch treated with organic and inorganic acid. J Food Sci Technol. 2015.  https://doi.org/10.1007/s13197-014-1650-x.Google Scholar
  30. 30.
    Beninca C, Colman TAD, Lacerda LG, Filho MASC, Bannach G, Schnitzler E. The thermal, rheological and structural properties of cassava starch granules modified with hydrochloric acid at different temperatures. Thermochim Acta. 2013.  https://doi.org/10.1016/j.tca.2012.10.020.Google Scholar
  31. 31.
    Pinto VZ, Vanier NL, Klein B, Zavareze ER, Elias MC, Gutkoski LC, Helbig E, Dias ARG. Physicochemical, crystallinity, pasting and thermal properties of heat-moisture-treated pinhão starch. Starch/Stärke. 2012.  https://doi.org/10.1002/star.201200040.Google Scholar
  32. 32.
    Conforti PA, Lupano CE. Starch characterization of Araucaria angustifolia and Araucaria araucana seeds. Starch/Stärke. 2007.  https://doi.org/10.1002/star.200600606.Google Scholar
  33. 33.
    Franco CML, Daiuto ER, Demiate IM, Carvalho LJCB, Leonel M, Vilpoux OF, Sarmento SBS. Propriedades gerais do amido. São Paulo: Fundação Cargill; 2002.Google Scholar
  34. 34.
    Sandhu KS, Singh N, Lim ST. A comparison of native and thinned acid normal and waxy corn starches: physicochemical, thermal morphological and pasting properties. Food Sci Technol. 2007.  https://doi.org/10.1016/j.lwt.2006.12.012.Google Scholar
  35. 35.
    Lawal OS. Composition, physicochemical properties and retrogradation characteristics of native, oxidized, acetylated and acid-thinned new cocoyam (Xanthosoma sagittifolium) starch. Food Chem. 2004.  https://doi.org/10.1016/j.foodchem.2003.11.013.Google Scholar
  36. 36.
    Sodhi NS, Chang YH, Kaur N, Kohyama K. Effect of acid-methanol treatment on the molecular structure and physicochemical properties of lentil (Lens culinaris Medik) starch. Food Hydrocoll. 2009.  https://doi.org/10.1016/j.foodhyd.2009.05.004.Google Scholar
  37. 37.
    Sun Q, Dai L, Nan C, Xiong L. Effect of heat moisture treatment on physicochemical and morphological properties of wheat starch and xylitol mixture. Food Chem. 2014.  https://doi.org/10.1016/j.foodchem.2013.07.113.Google Scholar
  38. 38.
    Zavareze ER, Dias ARG. Impact of heat-moisture treatment and annealing in starches: a review. Carbohydr Polym. 2011.  https://doi.org/10.1016/j.carbpol.2010.08.064.Google Scholar
  39. 39.
    Morris VJ. Starch gelation and retrogradation. Trends Food Sci Technol. 1990.  https://doi.org/10.1016/0924-2244(90)90002-G.Google Scholar
  40. 40.
    Oliveira CS, Andrade MMP, Colman TAD, Costa FJOG, Schnitzler E. Thermal, structural and rheological behavior of native and modified waxy corn starch with hydrochloric acid at different temperatures. J Therm Anal Calorim. 2014.  https://doi.org/10.1007/s10973-013-3307-9.Google Scholar
  41. 41.
    Luo ZG, Fu X, Gao QY, Yu SJ. Effect of acid hydrolysis in the presence of anhydrous alcohols on the structure, thermal and pasting properties of normal, waxy and high-amylose maize starches. Int J Food Sci Technol. 2011.  https://doi.org/10.1111/j.1365-2621.2010.02509.x.Google Scholar
  42. 42.
    Cavallini CM, Franco CML. Effect of acid-ethanol treatment followed by ball milling on structural and physicochemical characteristics of cassava starch. Starch/Stärke. 2010.  https://doi.org/10.1002/star.200900231.Google Scholar
  43. 43.
    Thys RCS, Aires AG, Marczak LDF, Noreña CPZ. The effect of acid hydrolysis on the technological functional properties of pinhão (Araucaria brasiliensis) starch. Ciênc Tecnol Aliment. 2013.  https://doi.org/10.1590/S0101-20612013000500014.Google Scholar
  44. 44.
    Atichokudomchai N, Shobsngob S, Varavinit S. Morphological properties of acid-modified tapioca starch. Starch/Stärke. 2000;52:283–9.CrossRefGoogle Scholar
  45. 45.
    Ribeiro LS, Cordoba LP, Colman TAD, Oliveira CS, Andrade MMP, Schnitzler E. Influence of some sugars on the thermal, rheological and morphological properties of “pinhão” starch. J Therm Anal Calorim. 2014.  https://doi.org/10.1007/s10973-014-3778-3.Google Scholar
  46. 46.
    Deepika V, Kumar KJ, Anima P. Isolation and physicochemical characterization of sustained releasing starches from Dioscorea of Jharkhand. Int J Biol Macromol. 2013.  https://doi.org/10.1016/j.ijbiomac.2012.11.027.Google Scholar
  47. 47.
    Lan X, Li Y, Xie S, Wang Z. Ultrastructure of underutilized tuber starches and its relation to physicochemical properties. Food Chem. 2015.  https://doi.org/10.1016/j.foodchem.2015.05.025.Google Scholar
  48. 48.
    Annison G, Topping DL. Nutritional role of resistant starch: chemical structure vs physiological function. Annu Rev Nutr. 1994.  https://doi.org/10.1146/annurev.nu.14.070194.001501.Google Scholar
  49. 49.
    Zhang L, Xie W, Zhao X, Liu Y, Gao W. Study on the morphology, crystalline structure and thermal properties of yellow ginger starch acetates with different degrees of substitution. Thermochim Acta. 2009.  https://doi.org/10.1016/j.tca.2009.05.019.Google Scholar
  50. 50.
    Wang L, Wang YJ. Structures and physicochemical properties of acid-thinned corn, potato and rice starches. Starch/Stärke. 2001.  https://doi.org/10.1002/1521-379X(200111)53:11%3c570:AID-STAR570%3e3.0.CO;2-S.Google Scholar
  51. 51.
    Xia L, Wenyuan G, Qiangian J, Yanli W, Xinhua G, Luq H. Physicochemical, crystalline, and thermal properties of native, oxidized, acid, and enzyme hydrolyzed Chinese yam (Dioscorea opposite Thunb) starch. Starch/Stärke. 2011.  https://doi.org/10.1002/star.201100017.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Geisa Liandra de Andrade de Siqueira
    • 1
  • Ana Claudia da Silveira
    • 2
  • Simone Rosa da Silveira Lazzarotto
    • 1
  • Rossana Catie Bueno de Godoy
    • 3
  • Egon Schnitzler
    • 1
  • Marcelo Lazzarotto
    • 2
    • 3
    Email author
  1. 1.Universidade Estadual de Ponta GrossaPonta GrossaBrazil
  2. 2.Universidade Federal do ParanáCuritibaBrazil
  3. 3.EMBRAPA FlorestasColomboBrazil

Personalised recommendations