Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3825–3832 | Cite as

Moisture sorption of biochar from banana pseudostem fibers according to the pyrolysis temperature

  • Diogenes dos Santos Dias
  • Flaviana Andrade Faria
  • Lucas Mattiolli
  • Marisa Veiga Capela
  • Jorge Manuel Vieira Capela
  • Marisa Spirandeli Crespi
  • Clovis Augusto RibeiroEmail author
Article
  • 156 Downloads

Abstract

Biomass has been widely used mainly for power generation or fertilizer and can be used in natura, torrefied or pyrolyzed form. For application in the generation of energy or fertilizer, it is necessary the knowledge of some properties such as the sorption of moisture. The main aim was to evaluate the sorption of moisture by the fibers from banana pseudostem in natura (wet basis), dry (100 °C), torrefied (200–300 °C) and pyrolyzed (400–600 °C). For the evaluation of the sorption of moisture was used climatized chamber at temperatures of 40 °C and 75% relative humidity (climatic zone IV). The results indicate that under the conditions used, when higher pyrolysis temperature is applied to the biomass, higher sorption of moisture occurs, with values close to 50% (w/w) for banana pseudostem fibers pyrolyzed at 600 °C. The significant increase in moisture was attributed initially by the presence of a high concentration of potassium oxalate that was later converted to carbonate in biochar obtained above 400 °C. In order to characterize the biomasses, thermogravimetry, differential scanning calorimetry, Fourier transform infrared spectroscopy and energy-dispersive spectroscopy were used. The exponential model was used to evaluate the kinetics of moisture sorption.

Keywords

Biochar Pyrolysis Torrefaction Moisture sorption Banana pseudostem fibers Kinetic of sorption 

Notes

References

  1. 1.
    AGRIANUAL 2016: Anuário da Agricultura Brasileira. São Paulo: FNP Consultoria & Agroinformativo, 2016. p. 456.Google Scholar
  2. 2.
    Roja MLB, Neces JM. Use of fibers of banana “nanicão“ ( Musa Grupo AAA, “Giant Cavendish“) stem in the paper fabrication. Congresso Iberoamericano de investigación en celulosa y papel; 2002.Google Scholar
  3. 3.
    Dias DS, Crespi MS, Ribeiro CA, Kobelnik M, Torquato LDM. Torrefied banana tree fiber pellets having embedded urea for agricultural use. J Therm Anal Calorim. 2018;131:705–12.CrossRefGoogle Scholar
  4. 4.
    Petter FA, De Lima LB, Morales MM, Junior BHM, Alves L. BIOCARVãO NO SOLO: Aspectos Agronômicos e Ambientais. Embrapa Florestas; 2016.Google Scholar
  5. 5.
    Novotny EH, Azevedo ER, Souza AA, Song G, Nogueira CM, Mangrich AS, Hayes MHB, Madari BE, Bonagamba T. Lessons from the Terra Preta de Indios of the Amazon region for the utilisation of charcoal for soil amendment. J Braz Chem Soc. 2009;20:1003–10.CrossRefGoogle Scholar
  6. 6.
    Stelte W, Sanadi AR, Shang L, Holm JK, Ahrenfeldt J, Henriksen UB. Recent developments in biomass pelletization—a review. BioResources. 2012;7(3):4451–90.Google Scholar
  7. 7.
    Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem. 2009;41:1301–10.CrossRefGoogle Scholar
  8. 8.
    Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems—a review. Mitigat Adapt Strat Global Change. 2006;11:403–27.CrossRefGoogle Scholar
  9. 9.
    Gray M, Johnson MG, Dragila MI, Kleber M. Water uptake in biochars: the roles of porosity and hydrophobicity. Biomass Bioenergy. 2014;61:195–205.CrossRefGoogle Scholar
  10. 10.
    Dias Junior AF, Pirola LP, Takeshita S, Lana AQ, Brito JO, Andrade AM. Hygroscopicity of charcoal produced in different temperatures. CERNE. 2016;22(4):423–30.CrossRefGoogle Scholar
  11. 11.
    Andrade AM, Della Lucia RM. Evaluation of wood charcoal hygroscopicity and is effects on the compression resitance of charcoal. Floresta Ambient. 1995;2:21–6.Google Scholar
  12. 12.
    Stability Testing of New Drug Substances and Products, Code Q1A(R2) in http://www.ich.org/products/guidelines/quality/quality-single/article/stability-testing-of-new-drug-substances-and-products.html. Accessed in May 9, 2018.
  13. 13.
    Torquato LD, Crnkovic PM, Ribeiro CA, Crespi MS. New approach for proximate analysis by thermogravimetry using CO\(_{2}\) atmosphere: validation and application to different biomasses. J Therm Anal Calorim. 2017;128:1–14.CrossRefGoogle Scholar
  14. 14.
    Popescu C-M, Singurel G, Popescu M-C, Vasile C, Argyropoulos DS, Willfor S. Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydr Polym. 2009;77(4):851–7.CrossRefGoogle Scholar
  15. 15.
    Over LC, Meier MAR. Sustainable allylation of organosolv lignin with diallyl carbonate and detailed structural characterization of modified lignin. Green Chem. 2016;18(1):197–207.CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Evans PA. Differentiating “hard” from “soft” woods using Fourier transform infrared and Fourier transform spectroscopy. Spectrochim Acta Part A Mol Spectrosc. 1991;47(9–10):1441–7.CrossRefGoogle Scholar
  18. 18.
    Agarwal UP, Atalla RH. Vibrational spectroscopy. In: Heitne C, Dimmel D, Schmidt J, editors. Lignin and lignans: advances in chemistry. Boca Raton: CRC Press; 2010. p. 104–29.Google Scholar
  19. 19.
    Clark RJH, Firth S. Raman, infrared and force field studies of \(\text{K}_2^{12}\text{C}_2\text{O}_4\cdot \text{H}_2\text{O}\) and \(\text{K}_2^{13}\text{C}_2\text{O}_4\cdot \text{H}_2\text{O}\) in solid state and in aqueous solution, and of \((\text{NH}_4)_2^{12}\text{C}_2\text{O}_4\text{H}_2\text{O}\) and \((\text{NH}_4)_2^{13}\text{C}_2\text{O}_4\cdot \text{H}_2\text{O}\) in the solid state. Spectrochim Acta Part A. 2002;58:1731–46.CrossRefGoogle Scholar
  20. 20.
    Dinnebier RE, Vensky S, Panthofer M, Jansen M. Crystal and molecular structures of alkali oxalates: first proof of a staggered oxalate anion in the solid state. Inorg Chem. 2003;42:1499–507.CrossRefGoogle Scholar
  21. 21.
    Peterson KI, Pullman DP. Determining the structure of oxalate anion using infrared and raman spectroscopy coupled with gaussian calculations. J Chem Educ. 2016;93:1130–3.CrossRefGoogle Scholar
  22. 22.
    Zhou G, Taylor G, Polle A. FTIR-ATR-based prediction and modelling of lignin and energy contents reveals independent intra-specific variation of these traits in bioenergy poplars. Plant Methods. 2011;7(1):9.CrossRefGoogle Scholar
  23. 23.
    Faix O. Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung. 1991;45(s1):21–8.CrossRefGoogle Scholar
  24. 24.
    Adapa PK, Karunakaran C, Tabil LG, Schoenau GJ. Potential applications of infrared and Raman spectromicroscopy for agricultural biomass. Agricultural Engineering International: the CIGR Ejournal, Manuscript 1081 Vol. XI(February); 2009. p. 1–25.Google Scholar
  25. 25.
    Chia CH, Gong B, Joseph SD, Marjob CE, Munroe P, Rich AM. Imaging of mineral-enriched biochar by FTIR, Raman and SEM-EDX. Vib Spectrosc. 2012;62:248–57.CrossRefGoogle Scholar
  26. 26.
    Pandey KK. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci. 1999;71(12):1969–75.CrossRefGoogle Scholar
  27. 27.
    Faix O. Fourier transform infrared spectroscopy. In: Lin SY, Dence CW, editors. Methods in lignin chemistry. Berlin: Springer; 1992. p. 83–106 (Wood Science).CrossRefGoogle Scholar
  28. 28.
    Pedersen BF. Interpretation of infrared spectra of solid alkali metal oxalates, their hydrates and perhydrates. Acta Chem Scand. 1967;21(3):801–11.CrossRefGoogle Scholar
  29. 29.
    Anhwange BA, Ugye TJ, Nyiaatagher TD. Chemical composition of Musa sapientum (banana) peels. EJEAFChe. 2009;8(6):437–42.Google Scholar
  30. 30.
    ATR-FT-IR Potassium carbonate (K2CO3) (2015). http://lisa.chem.ut.ee/IR-spectra/paint/fillers/potassium-carbonate/. Accessed 20 June 2018.
  31. 31.
  32. 32.
    Higashiyama T, Hasegawa S. The differential thermal analysis of potassium oxalate. Bull Chem Soc Jpn. 1971;44:1727–30.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Diogenes dos Santos Dias
    • 1
  • Flaviana Andrade Faria
    • 1
  • Lucas Mattiolli
    • 1
  • Marisa Veiga Capela
    • 1
  • Jorge Manuel Vieira Capela
    • 1
  • Marisa Spirandeli Crespi
    • 1
  • Clovis Augusto Ribeiro
    • 1
    Email author
  1. 1.São Paulo State University – IQ/UNESPAraraquaraBrazil

Personalised recommendations