Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3367–3373 | Cite as

Sample pattern and temperature distribution in nanocalorimetry measurements

  • Feng Yi
  • Lawrence H. Friedman
  • Richard Chen
  • David A. LaVanEmail author
Article

Abstract

Uniform temperature distribution over the probed area of nanocalorimeters is critical for accurate measurements and is often assumed, but the temperature distribution is, in many cases, non-uniform, depends on the sample dimensions and coverage, and can affect the measurement results. Here, using an aluminum thin film as a model material, the effects of sample coverage on measured melting temperature and enthalpy of fusion were studied. Results suggest that undersized samples increase the reported peak and onset values for melting temperature, and that oversized samples cause significant errors in the quantification of the enthalpy of fusion. A finite element model of the dynamics of the temperature distribution was created to clarify the underlying mechanisms. This work provides a simple guideline for the ideal sample pattern for chip-based thermal measurements: covering the entire probed area of the heater: not undersized or oversized.

Keywords

Nanocalorimeter Nanocalorimetry Fast scanning calorimetry Temperature distribution Melting temperature Aluminum Finite element 

Notes

Acknowledgements

Certain commercial equipment, instruments, software, and materials are identified in this document. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose. Nanocalorimeter fabrication was performed in part at the NIST Center for Nanoscale Science & Technology (CNST). Richard Chen was a summer intern from Montgomery Blair High School.

Supplementary material

10973_2019_8139_MOESM1_ESM.avi (6.9 mb)
Supplementary material 1 (AVI 7023 kb)
10973_2019_8139_MOESM2_ESM.avi (6.6 mb)
Supplementary material 2 (AVI 6791 kb)
10973_2019_8139_MOESM3_ESM.avi (6.8 mb)
Supplementary material 3 (AVI 6975 kb)
10973_2019_8139_MOESM4_ESM.avi (6.3 mb)
Supplementary material 4 (AVI 6451 kb)

References

  1. 1.
    Yi F, LaVan DA. Nanoscale thermal analysis for nanomedicine by nanocalorimetry. Wiley Interdiscip Rev: Nanomed Nanobiotechnol. 2012;4(1):31–41.  https://doi.org/10.1002/wnan.155.CrossRefGoogle Scholar
  2. 2.
    Zhang M, Efremov MY, Schiettekatte F, Olson EA, Kwan AT, Lai SL, et al. Size-dependent melting point depression of nanostructures: nanocalorimetric measurements. Phys Rev B. 2000;62(15):10548–57.  https://doi.org/10.1103/physrevb.62.10548.CrossRefGoogle Scholar
  3. 3.
    Adamovsky SA, Minakov AA, Schick C. Scanning microcalorimetry at high cooling rate. Thermochim Acta. 2003;403(1):55–63.  https://doi.org/10.1016/s0040-6031(03)00182-5.CrossRefGoogle Scholar
  4. 4.
    Yi F, Kim IK, Li S, LaVan DA. Hydrated/dehydrated lipid phase transitions measured using nanocalorimetry. J Pharm Sci. 2014;103(11):3442–7.  https://doi.org/10.1002/jps.24187.CrossRefPubMedGoogle Scholar
  5. 5.
    de la Rama LP, Hu L, Ye ZC, Efremov MY, Allen LH. Size effect and odd-even alternation in the melting of single and stacked AgSCn layers: synthesis and nanocalorimetry measurements. J Am Chem Soc. 2013;135(38):14286–98.  https://doi.org/10.1021/ja4059958.CrossRefPubMedGoogle Scholar
  6. 6.
    Huth H, Minakov AA, Schick C. Differential AC-chip calorimeter for glass transition measurements in ultrathin films. J Polym Sci Part B-Polym Phys. 2006;44(20):2996–3005.  https://doi.org/10.1002/polb.20921.CrossRefGoogle Scholar
  7. 7.
    Zink BL, Pietri R, Hellman F. Thermal conductivity and specific heat of thin-film amorphous silicon. Phys Rev Lett. 2006.  https://doi.org/10.1103/physrevlett.96.055902.CrossRefPubMedGoogle Scholar
  8. 8.
    McCluskey PJ, Vlassak JJ. Combinatorial nanocalorimetry. J Mater Res. 2010;25(11):2086–100.  https://doi.org/10.1557/jmr.2010.0286.CrossRefGoogle Scholar
  9. 9.
    Leon-Gutierrez E, Garcia G, Lopeandia AF, Fraxedas J, Clavaguera-Mora MT, Rodriguez-Viejo J. In situ nanocalorimetry of thin glassy organic films. J Chem Phys. 2008;129(18):181101.  https://doi.org/10.1063/1.3009766.CrossRefPubMedGoogle Scholar
  10. 10.
    Cook LP, Cavicchi RE, Green ML, Montgomery CB, Egelhoff WF. Thin-film nanocalorimetry: a new approach to the evaluation of interfacial stability for nanoelectronic applications. In: Seiler DG, Diebold AC, McDonald R, Garner CM, Herr D, Khosla RP et al., editors. Frontiers of characterization and metrology for nanoelectronics: 2007. Aip conference proceedings. Melville: Amer Inst Physics; 2007. p. 151–5.Google Scholar
  11. 11.
    Grapes MD, LaGrange T, Friedman LH, Reed BW, Campbell GH, Weihs TP, et al. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling. Rev Sci Instrum. 2014.  https://doi.org/10.1063/1.4892537.CrossRefPubMedGoogle Scholar
  12. 12.
    Yi F, DeLisio JB, Zachariah MR, Lavan DA. Nanocalorimetry-coupled time-of-flight mass spectrometry: identifying evolved species during high-rate thermal measurements. Anal Chem. 2015;87(19):9740–4.  https://doi.org/10.1021/acs.analchem.5b01872.CrossRefPubMedGoogle Scholar
  13. 13.
    Yi F, Stevanovic A, Osborn WA, Kolmakov A, LaVan DA. Multi-environment nanocalorimeter with electrical contacts for use in the scanning electron microscope. Mater Horiz. 2017;4(6):1128–34.  https://doi.org/10.1039/c7mh00513j.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Orava J, Greer AL, Gholipour B, Hewak DW, Smith CE. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat Mater. 2012;11(4):279–83.  https://doi.org/10.1038/nmat3275.CrossRefPubMedGoogle Scholar
  15. 15.
    Swaminathan P, LaVan DA, Weihs TP. Dynamics of solidification in Al thin films measured using a nanocalorimeter. J Appl Phys. 2011.  https://doi.org/10.1063/1.3668128.CrossRefGoogle Scholar
  16. 16.
    Lai SL, Carlsson JRA, Allen LH. Melting point depression of Al clusters generated during the early stages of film growth: nanocalorimetry measurements. Appl Phys Lett. 1998;72(9):1098–100.  https://doi.org/10.1063/1.120946.CrossRefGoogle Scholar
  17. 17.
    Vohra M, Grapes M, Swaminathan P, Weihs TP, Knio OM. Modeling and quantitative nanocalorimetric analysis to assess interdiffusion in a Ni/Al bilayer. J Appl Phys. 2011;110(12):123521.  https://doi.org/10.1063/1.3671639.CrossRefGoogle Scholar
  18. 18.
    Yi F, LaVan DA. Electrospray-assisted nanocalorimetry measurements. Thermochim Acta. 2013;569:1–7.  https://doi.org/10.1016/j.tca.2013.06.015.CrossRefGoogle Scholar
  19. 19.
    Swaminathan P, Burke BG, Holness AE, Wilthan B, Hanssen L, Weihs TP, et al. Optical calibration for nanocalorimeter measurements. Thermochim Acta. 2011;522(1–2):60–5.  https://doi.org/10.1016/j.tca.2011.03.006.CrossRefGoogle Scholar
  20. 20.
    Yi F, Grapes MD, LaVan DA. Practical guide to the design, fabrication and calibration of NIST nanocalorimeters. J Res Natl Inst Stand Technol (submitted).Google Scholar
  21. 21.
    Cebe P, Partlow BP, Kaplan DL, Wurm A, Zhuravlev E, Schick C. Using flash DSC for determining the liquid state heat capacity of silk fibroin. Thermochim Acta. 2015;615:8–14.  https://doi.org/10.1016/j.tca.2015.07.009.CrossRefGoogle Scholar
  22. 22.
    McDonald RA. Enthalpy heat capacity and heat of fusion of aluminum from 366° to 1647°. K. J Chem Eng Data. 1967;12(1):115.  https://doi.org/10.1021/je60032a037.CrossRefGoogle Scholar
  23. 23.
    Desai PD. Thermodynamics properties of aluminum. Int J Thermophys. 1987;8(5):621–38.  https://doi.org/10.1007/bf00503647.CrossRefGoogle Scholar
  24. 24.
    van Zwol PJ, Vles DF, Voorthuijzen WP, Peter M, Vermeulen H, van der Zande WJ, et al. Emissivity of freestanding membranes with thin metal coatings. J Appl Phys. 2015;118(21):5.  https://doi.org/10.1063/1.4936851.CrossRefGoogle Scholar
  25. 25.
    Bartl J, Baranek M. Emissivity of aluminium and its importance for radiometric measurement. Meas Sci Rev. 2004;4(3):31–6.Google Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection  2019

Authors and Affiliations

  1. 1.Materials Measurement Science Division, Material Measurement LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations