Journal of Thermal Analysis and Calorimetry

, Volume 137, Issue 6, pp 2081–2097 | Cite as

Modeling and economic analysis of a parabolic trough solar collector used in order to preheat the process fluid of furnaces in a refinery (case study: Parsian Gas Refinery)

  • Bagher Mokhtari Shahdost
  • Mohammad Ali Jokar
  • Fatemeh Razi AstaraeiEmail author
  • Mohammad Hossein AhmadiEmail author


Nowadays, due to the increased greenhouse gas emissions and high energy prices, it is essential to use renewable energy sources in different industrial applications. In this study, the technical and economic assessment of using solar energy in order to preheat the process fluid before entering the furnaces in refinery is carried out. The furnace unit 400 (an indirect furnace) used in Parsian Gas Refinery, which uses natural gas as a fuel, is studied. Mid-temperature solar energy is a practical energy source in this case with respect to the temperature range of the heated process fluid by furnaces which is about 300 °C. Among different types of solar thermal systems for collecting the solar energy, the parabolic trough solar collector is selected in this research because of the advantages it offers including its temperature range and lower cost. The proposed solar thermal preheating system coupled with the furnace is modeled using TRNSYS software. In the optimum condition, the maximum amount of fuel that can be saved using solar energy for the studied furnace is 1,996,000 m3 per year which is about 23.8% of the fuel consumption of the furnace and is responsible for 3557.7 ton CO2 emissions per year. Finally, using solar heat exchanger before the furnace considering different sizes of solar farm is economically evaluated, taking into account different fuel prices and different mortgage rates. The results show that at natural gas prices more than 45 cents per m3 as the fuel, in different sizes of the system, it is perfectly economic to use solar thermal collector as a preheating system.


Parabolic trough collector Solar heat exchanger Furnace Economic analysis 



  1. 1.
    Hoel M, Kverndokk S. Depletion of fossil fuels and the impacts of global warming. Resour Energy Econ. 1996;18(2):115–36.CrossRefGoogle Scholar
  2. 2.
    World-Bank. Population growth (annual %). Updated 2012.
  3. 3.
    Siraj MS. Energy resources—the ultimate solution. Renew Sustain Energy Rev. 2012;16(4):1971–6.CrossRefGoogle Scholar
  4. 4.
    Ahmadi MH, Alhuyi Nazari M, Ghasempour R, Pourfayaz F, Rahimzadeh M, Ming T. A review on solar-assisted gas turbines. Energy Sci Eng. 2018;6(6):658–74.CrossRefGoogle Scholar
  5. 5.
    Astaraei FR, Sameti M, Jokar MA, Pourfayaz F. Numerical simulation of solar-driven Kalina cycle performance for centralized residential buildings in Iran. Intell Build Int. 2018;10(4):197–219.CrossRefGoogle Scholar
  6. 6.
    Sameti M, Jokar MA, Astaraei FR. Prediction of solar Stirling power generation in smart grid by GA-ANN model. Int J Comput Appl Technol. 2017;55(2):147–57.CrossRefGoogle Scholar
  7. 7.
    Haghighi Bardineh Y, Mohamadian F, Ahmadi MH, Akbarianrad N. Medical and dental applications of renewable energy systems. Int J Low-Carbon Technol. 2018;13(4):320–6.CrossRefGoogle Scholar
  8. 8.
    Kalogirou SA. Solar energy engineering: processes and systems. New York: Academic Press; 2013.Google Scholar
  9. 9.
    Baghernejad A, Yaghoubi M. Exergy analysis of an integrated solar combined cycle system. Renew Energy. 2010;35(10):2157–64.CrossRefGoogle Scholar
  10. 10.
    eddine Boukelia T, Mecibah M-S. Parabolic trough solar thermal power plant: potential, and projects development in Algeria. Renew Sustain Energy Rev. 2013;21:288–97.CrossRefGoogle Scholar
  11. 11.
    Dayem AA, Metwally MN, Alghamdi A, Marzouk E. Numerical simulation and experimental validation of integrated solar combined power plant. Energy Procedia. 2014;50:290–305.CrossRefGoogle Scholar
  12. 12.
    Merrouni AA, Elalaoui FE, Ghennioui A, Mezrhab A, Mezrhab A. A GIS-AHP combination for the sites assessment of large-scale CSP plants with dry and wet cooling systems. Case study: Eastern Morocco. Solar Energy. 2018;166:2–12.CrossRefGoogle Scholar
  13. 13.
    Giostri A, Binotti M, Astolfi M, Silva P, Macchi E, Manzolini G. Comparison of different solar plants based on parabolic trough technology. Sol Energy. 2012;86(5):1208–21.CrossRefGoogle Scholar
  14. 14.
    Solar PACES. Updated 2012.
  15. 15.
    Biencinto M, González L, Valenzuela L. A quasi-dynamic simulation model for direct steam generation in parabolic troughs using TRNSYS. Appl Energy. 2016;161:133–42.CrossRefGoogle Scholar
  16. 16.
    Alguacil M, Prieto C, Rodríguez A, Lohr J. Direct steam generation in parabolic trough collectors. Energy Procedia. 2014;49:21–9.CrossRefGoogle Scholar
  17. 17.
    Beemkumar N, Yuvarajan D, Karthikeyan A, Ganesan S. Comparative experimental study on parabolic trough collector integrated with thermal energy storage system by using different reflective materials. J Therm Anal Calorim. 2019. Scholar
  18. 18.
    Bellos E, Tzivanidis C. Thermal efficiency enhancement of nanofluid-based parabolic trough collectors. J Therm Anal Calorim. 2019;135:597–608.CrossRefGoogle Scholar
  19. 19.
    Silva R, Cabrera FJ, Pérez-García M. Process heat generation with parabolic trough collectors for a vegetables preservation industry in Southern Spain. Energy Procedia. 2014;48:1210–6.CrossRefGoogle Scholar
  20. 20.
    Mesfin M, Assefa A. Modeling, simulation and performance evaluation of parabolic trough solar collector power generation system. Zede J. 2010;27:81–9.Google Scholar
  21. 21.
    Borunda M, Jaramillo O, Dorantes R, Reyes A. Organic rankine cycle coupling with a parabolic trough solar power plant for cogeneration and industrial processes. Renew Energy. 2016;86:651–63.CrossRefGoogle Scholar
  22. 22.
    Bakos G, Petroglou D. Simulation study of a large scale line-focus trough collector solar power plant in Greece. Renew Energy. 2014;71:1–7.CrossRefGoogle Scholar
  23. 23.
    Bakos G, Tsechelidou C. Solar aided power generation of a 300 MW lignite fired power plant combined with line-focus parabolic trough collectors field. Renew Energy. 2013;60:540–7.CrossRefGoogle Scholar
  24. 24.
    Hassani S, Saidur R, Mekhilef S, Hepbasli A. A new correlation for predicting the thermal conductivity of nanofluids; using dimensional analysis. Int J Heat Mass Transf. 2015;90:121–30.CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Dezhou Gaia Solar Energy Co. Ltd. 2018.
  27. 27.
    Goswami DY, Kreith F. Energy conversion. Boca Raton: CRC Press; 2007.CrossRefGoogle Scholar
  28. 28.
    Mohr M, Svoboda P, Unger H. Praxis solarthermischer Kraftwerke. Berlin: Springer; 2013.Google Scholar
  29. 29.
    Gunther M, Joemann M, Csambor S. Chapter 5: Parabolic trough technology. In: Advanced CSP teaching materials. Enermena; 2011.Google Scholar
  30. 30.
    Lippke F. Simulation of the part-load behavior of a 30 MWe SEGS plant. Albuquerque: Sandia National Labs; 1995.CrossRefGoogle Scholar
  31. 31.
    Jones S, Pitz-Paal R, Schwarzboezl P, Blair N, Cable R. TRNSYS modeling of the SEGS VI parabolic trough solar electric generating system. Solar Eng. (2001):405–12.Google Scholar
  32. 32.
    Bakos G, Parsa D. Technoeconomic assessment of an integrated solar combined cycle power plant in Greece using line-focus parabolic trough collectors. Renew Energy. 2013;60:598–603.CrossRefGoogle Scholar
  33. 33.
    Hafeznia H, Pourfayaz F, Maleki A. An assessment of Iran’s natural gas potential for transition toward low-carbon economy. Renew Sustain Energy Rev. 2017;79:71–81.CrossRefGoogle Scholar
  34. 34.
    Central Bank of the Islamic Republic of Iran. 2018.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Bagher Mokhtari Shahdost
    • 1
  • Mohammad Ali Jokar
    • 1
  • Fatemeh Razi Astaraei
    • 1
    Email author
  • Mohammad Hossein Ahmadi
    • 2
    Email author
  1. 1.Department of Renewable Energies and Environment, Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran
  2. 2.Faculty of Mechanical EngineeringShahrood University of TechnologyShahroodIran

Personalised recommendations