Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 137, Issue 6, pp 1991–2006 | Cite as

Entropy generation analysis on electroosmotic flow in non-Darcy porous medium via peristaltic pumping

  • S. NoreenEmail author
  • Qurat Ul Ain
Article
  • 78 Downloads

Abstract

In current paper, it is aimed to investigate the entropy generation of electroosmotic flow aggravated by peristaltic pumping across a non-Darcy porous medium. We have implemented the Darcy Forchheimer model to interpret the permeability of porous media. The electro-magneto-hydrodynamic flow is considered in a symmetric channel. We have analyzed the flow characteristics, heat transfer and entropy generation for various values of joule heating parameter \(\gamma\), Hartmann number \(H_{\text{m}}\), Darcy number \(\Omega^{2}\), Forchheimer number \(c_{\text{F}}\) and electroosmotic parameter m. It is found that entropy generation increases for increasing values of Darcy number \(\Omega^{2}\) and Forchheimer number \(c_{\text{F}}\).

Keywords

Entropy generation Electroosmosis Heat transfer Peristalsis Non-Darcy porous medium 

Notes

References

  1. 1.
    Bejan A. Entropy generation minimization. 2nd ed. Boca Raton: CRC; 1996.Google Scholar
  2. 2.
    Sciacovelli A, Verda V, Sciubba E. Entropy generation analysis as a design tool—a review. Renew Sustain Energy Rev. 2015;43:1167–81.Google Scholar
  3. 3.
    Zhao L, Liu LH. Entropy generation analysis of electro-osmotic flow in open-end and closed-end micro-channels. Ain Shams Eng J. 2017;8:623–32.Google Scholar
  4. 4.
    Rashidi MM, Abelman S, Mehr NF. Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int J Heat Mass Transf. 2013;62:515–25.Google Scholar
  5. 5.
    Afridi MI, Qasim M, Khan I, Tlili I. Entropy generation in MHD mixed convection stagnation-point flow in the presence of joule and frictional heating. Case Stud Therm Eng. 2018;12:292–300.Google Scholar
  6. 6.
    Gul A, Khan I, Makhanov SS. Entropy generation in a mixed convection Poiseulle flow of molybdenum disulphide Jeffrey nanofluid. Results Phys. 2018;9:947–54.Google Scholar
  7. 7.
    Saqib M, Ali F, Khan I, Sheikh NA, Khan A. Entropy generation in different types of fractionalized nanofluids. Arab J Sci Eng. 2018:44(1):1–10.Google Scholar
  8. 8.
    Adesanya SO, Falade JA. Thermodynamics analysis of hydromagnetic third grade fluid flow through a channel filled with porous medium. Alex Eng J. 2015;54(3):615–22.Google Scholar
  9. 9.
    Afridi MI, Qasim M, Shafie S, Makinde OD. Entropy generation analysis of spherical and non-spherical ag-water nanofluids in a porous medium with magnetic and porous dissipation. J Nanofluids. 2018;7(5):951–60.Google Scholar
  10. 10.
    Abbas MA, Bai Y, Rashidi MM, Bhatti MM. Analysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant walls. Entropy. 2016;18(3):90.Google Scholar
  11. 11.
    Rashidi MM, Bhatti MM, Abbas MA, Ali ME. Entropy generation on MHD blood flow of nanofluid due to peristaltic waves. Entropy. 2016;18(4):117.Google Scholar
  12. 12.
    Qasim M, Hayat Khan Z, Khan I, Al-Mdallal QM. Analysis of entropy generation in flow of methanol-based nanofluid in a sinusoidal wavy channel. Entropy. 2017;19(10):490.Google Scholar
  13. 13.
    Alizadeh R, Karimi N, Arjmandzadeh R, et al. Mixed convection and thermodynamic irreversibilities in MHD nanofluid stagnation-point flows over a cylinder embedded in porous media. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7071-8.Google Scholar
  14. 14.
    Shamsabadi H, Rashidi S, Esfahani JA. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7350-4.Google Scholar
  15. 15.
    Cameselle C, Reddy KR. Development and enhancement of electro-osmotic flow for the removal of contaminants from soils. Electrochim Acta. 2012;86:10–22.Google Scholar
  16. 16.
    Zhou J, Tao YL, Xu CJ, Gong XN, Hu PC. Electro-osmotic strengthening of silts based on selected electrode materials. Soils Found. 2015;55(5):1171–80.Google Scholar
  17. 17.
    Tripathi D, Bhushan S, Bég OA. Transverse magnetic field driven modification in unsteady peristaltic transport with electrical double layer effects. Colloids Surf A. 2016;506:32–9.Google Scholar
  18. 18.
    Bouriat P, Saulnier P, Brochette P, Graciaa A, Lachaise J. A convenient apparatus to determine the zeta potential of grains by electro-osmosis. J Colloid Interface Sci. 1999;209(2):445–8.Google Scholar
  19. 19.
    Li B, Zhou WN, Yan YY, Tian C. Evaluation of electro-osmotic pumping effect on microporous media flow. Appl Therm Eng. 2013;60(1–2):449–55.Google Scholar
  20. 20.
    Latham TW. Fluid motion in a peristaltic pump. Cambridge: MIT; 1966.Google Scholar
  21. 21.
    Noreen S. Peristaltically assisted nanofluid transport in an asymmetric channel. Karbala Int J Mod Sci. 2018;4(1):35–49.Google Scholar
  22. 22.
    Noreen S, Rashidi MM, Qasim M. Blood flow analysis with considering nanofluid effects in vertical channel. Appl Nanosci. 2017;7(5):193–9.Google Scholar
  23. 23.
    Noreen S. Effects of joule heating and convective boundary conditions on magnetohydrodynamic peristaltic flow of couple-stress fluid. J Heat Transf. 2016;138(9):094502.Google Scholar
  24. 24.
    Misra JC, Pandey SK. Peristaltic transport of blood in small vessels: study of a mathematical model. Comput Math Appl. 2002;43(8–9):1183–93.Google Scholar
  25. 25.
    Mishra M, Rao AR. Peristaltic transport of a Newtonian fluid in an asymmetric channel. Z angew Math Phys ZAMP. 2003;54(3):532–50.Google Scholar
  26. 26.
    Qasim M, Noreen S. Heat transfer in the boundary layer flow of a Casson fluid over a permeable shrinking sheet with viscous dissipation. Eur Phys J Plus. 2014;129(1):7.Google Scholar
  27. 27.
    Vajravelu K, Radhakrishnamacharya G, Radhakrishnamurty V. Peristaltic flow and heat transfer in a vertical porous annulus, with long wave approximation. Int J Non-Linear Mech. 2007;42(5):754–9.Google Scholar
  28. 28.
    Srinivas S, Kothandapani M. The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls. Appl Math Comput. 2009;213(1):197–208.Google Scholar
  29. 29.
    Tripathi D. Peristaltic transport of a viscoelastic fluid in a channel. Acta Astronaut. 2011;68(7–8):1379–85.Google Scholar
  30. 30.
    Starov VM, Zhdanov VG. Effective viscosity and permeability of porous media. Colloids Surf A. 2001;192(1–3):363–75.Google Scholar
  31. 31.
    Reddy MG. Heat and mass transfer on magnetohydrodynamic peristaltic flow in a porous medium with partial slip. Alex Eng J. 2016;55(2):1225–34.Google Scholar
  32. 32.
    Elshehawey EF, Eldabe NT, Elghazy EM, Ebaid A. Peristaltic transport in an asymmetric channel through a porous medium. Appl Math Comput. 2006;182(1):140–50.Google Scholar
  33. 33.
    Noreen S. Magneto-thermo hydrodynamic peristaltic flow of Eyring–Powell nanofluid in asymmetric channel. Nonlinear Eng. 2018;7(2):83–90.Google Scholar
  34. 34.
    Khalid A, Khan I, Khan A, Shafie S, Tlili I. Case study of MHD blood flow in a porous medium with CNTS and thermal analysis. Case Stud Therm Eng. 2018;12:374–80.Google Scholar
  35. 35.
    Khan I, Abro KA, Mirbhar MN, Tlili I. Thermal analysis in Stokes’ second problem of nanofluid: applications in thermal engineering. Case Stud Therm Eng. 2018;12:271–5.Google Scholar
  36. 36.
    Kouloulias K, Sergis A, Hardalupas YJ. Assessing the flow characteristics of nanofluids during turbulent natural convection. Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7631-y.Google Scholar
  37. 37.
    Forcheimer P. Wasserbewewegung durch Boden. Z Ver Deutsch Ing. 1901;45:1782–8.Google Scholar
  38. 38.
    Begum AS, Nithyadevi N, Öztop HF, Al-Salem K. Numerical simulation of MHD mixed convection in a nanofluid filled non-darcy porous enclosure. Int J Mech Sci. 2017;1(130):154–66.Google Scholar
  39. 39.
    Wu YS. Non Darcy displacements of immiscible fluids in porous media. Water Resour Res 2001;37:2943–50.Google Scholar
  40. 40.
    Veyskarami M, Hassani AH, Ghazanfari MH. Modeling of non-Darcy flow through anisotropic porous media: role of pore space profiles. Chem Eng Sci. 2016;151:93–104.Google Scholar
  41. 41.
    Gupta A, Coelho D, Adler PM. Universal electro-osmosis formulae for porous media. J Colloid Interface Sci. 2008;319(2):549–54.Google Scholar
  42. 42.
    Tripathi D. Study of transient peristaltic heat flow through a finite porous channel. Math Comput Model. 2013;57(5–6):1270–83.Google Scholar
  43. 43.
    Tripathia D, Bhushan S, Bég OA. Unsteady viscous flow driven by the combined effects of peristalsis and electro-osmosis. Alex Eng J 2018;57(3):1349–59.Google Scholar
  44. 44.
    Goswami P, Chakraborty S. Semi-analytical solutions for electrosomotic flows with interfacial slip in microchannels of complex crosssectional shapes. Microfluid Nanofluid. 2011;11:255–67.Google Scholar
  45. 45.
    Tripathi D, Bhushan S, Beg OA. Transverse magnetic field driven modification in unsteady peristaltic transport with electrical double layer effects. Colloids Surf A Physicochem Eng Asp. 2016;506:32–9.Google Scholar
  46. 46.
    Nield DA. Modelling fluid flow and heat transfer in a saturated porous medium. Adv Decis Sci. 2000;4(2):165–73.Google Scholar
  47. 47.
    Jaffrin MY, Shapiro AH. Peristaltic pumping. Annu Rev Fluid Mech. 1971;3:13–37.Google Scholar
  48. 48.
    Shapiro AH, Jaffrin MY, Weinberg SL. Peristaltic pumping with long wavelengths and low Reynolds number. J Fluid Mech. 1969;37:799–825.Google Scholar
  49. 49.
    Kikuchi Y. Effect of Leukocytes and platelets on blood flow through a parallel array of microchannels: micro-and Macroflow relation and rheological measures of leukocytes and platelate acivities. Microvasc Res. 1995;50:288–300.Google Scholar
  50. 50.
    Akbar NS. Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field. Energy. 2015;82:23–30.Google Scholar
  51. 51.
    Adesanya SO, Falade JA. Thermodynamics analysis of hydromagnetic third grade fluid flow through a channel filled with porous medium. Alex Eng J. 2015;54:615–22.Google Scholar
  52. 52.
    Akbar NS, Raza M, Ellahi R. Peristaltic flow with thermal conductivity of H2O + Cu nanofluid and entropy generation. Results Phys. 2015;5:115–24.Google Scholar
  53. 53.
    Abbas MA, Yanqin B, Rashidi MM, Bhatti MM. Analysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant walls. Entropy. 2016;18:90.Google Scholar
  54. 54.
    Rashidi MM, Bhatti MM, Abbas MA, Ali MES. Entropy generation on MHD blood flow of nanofluid due to peristaltic waves. Entropy. 2016;16:117.Google Scholar
  55. 55.
    Maraj EN, Nadeem S. Theoretical analysis of entropy generation in peristaltic transport of nanofluid in an asymmetric channel. Int J Exergy. 2016;20:294–317.Google Scholar
  56. 56.
    Munawar S, Saleem N, Aboura K. Second law analysis in the peristaltic flow of variable viscosity fluid. Int J Exergy. 2016;20:170–85.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of MathematicsComsats University IslamabadIslamabadPakistan

Personalised recommendations