Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 137, Issue 6, pp 1969–1979 | Cite as

Thermo-oxidative degradation kinetics of renewable hybrid polyurethane–urea obtained from air-oxidized soybean oil

  • Pedro Antonio Ourique
  • Felipe Gustavo Ornaghi
  • Heitor Luiz OrnaghiJr.
  • Cesar Henrique Wanke
  • Otávio BianchiEmail author
Article

Abstract

This study explores the synthesis and kinetics of non-isothermal thermo-oxidative degradation of renewable hybrid polyurethane (PU)–urea obtained from air-oxidized soybean oil. Fourier transformed infrared spectroscopy (FTIR) and thermogravimetry (TG) analyses were performed, aiming to verify chemical changes and the kinetics parameters using different approaches for the samples obtained. FTIR confirmed that a polymerization process occurred as well and modification in the relative hydrogen bonds is due to the formed urea groups that formed in the hybrid materials. TG analysis showed a dependence of the activation energy (using the FWO and KAS model-free methods) on the degree of conversion for all samples studied in three different degradation steps. The most probable degradation mechanism was tested by using a multivariate nonlinear regression by using the F statistical test. For all samples, the autocatalytic model successfully described the thermo-oxidative degradation, which is in accordance with the chemical degradation process for polyurethanes. Finally, thermal degradation in the time function was estimated and more satisfactory results were obtained by comparing the literature data for similar systems. So, it was possible to obtain reliable and consistent results of the kinetic parameters, which are essential for academic and industrial purposes.

Keywords

Renewable hybrid materials Kinetics Thermo-oxidative Polyurethane–urea 

Notes

Acknowledgements

The authors thank the “Mantova Industria de tubos flexíveis” for donating MDI and FAPERGS for a scholarship to Pedro A. Ourique. This work was supported by CNPq—National Council for Scientific and Technological Development, Brazil (Grant 473402/2013-0 and 308241/2015-0).

References

  1. 1.
    Ionescu M. Chemistry and technology of polyols for polyurethanes. Shrewsbury: iSmithers Rapra Publishing; 2005.Google Scholar
  2. 2.
    Oertel G, Abele L. Polyurethane handbook: chemistry, raw materials, processing, application, properties. Macmillan: Hanser Publishers. Distributed in USA by Scientific and Technical Books; 1985.Google Scholar
  3. 3.
    Hentschel T, Münstedt H. Kinetics of the molar mass decrease in a polyurethane melt: a rheological study. Polymer. 2001;42:3195–203.CrossRefGoogle Scholar
  4. 4.
    Herrera M, Matuschek G, Kettrup A. Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polym Degrad Stab. 2002;78:323–31.CrossRefGoogle Scholar
  5. 5.
    Delebecq E, Pascault J-P, Boutevin B, Ganachaud F. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev. 2013;113:80–118.CrossRefGoogle Scholar
  6. 6.
    Raquez JM, Deléglise M, Lacrampe MF, Krawczak P. Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci. 2010;35:487–509.CrossRefGoogle Scholar
  7. 7.
    Ionescu M, Petrović ZS, Wan X. Ethoxylated soybean polyols for polyurethanes. J Polym Environ. 2007;15:237–43.CrossRefGoogle Scholar
  8. 8.
    Guo A, Cho Y, Petrović ZS. Structure and properties of halogenated and nonhalogenated soy-based polyols. J Polym Sci Part A Polym Chem. 2000;38:3900–10.CrossRefGoogle Scholar
  9. 9.
    Lu Y, Larock RC. Soybean-oil-based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties. Biomacromolecules. 2008;9:3332–40.CrossRefGoogle Scholar
  10. 10.
    Petrović ZS, Guo A, Javni I, Cvetković I, Hong DP. Polyurethane networks from polyols obtained by hydroformylation of soybean oil. Polym Int. 2008;57:275–81.CrossRefGoogle Scholar
  11. 11.
    Zlatanić A, Lava C, Zhang W, Petrović ZS. Effect of structure on properties of polyols and polyurethanes based on different vegetable oils. J Polym Sci Part B Polym Phys. 2004;42:809–19.CrossRefGoogle Scholar
  12. 12.
    Ourique PA, Gril JML, Guillaume GW, Wanke CH, Echeverrigaray SG, Bianchi O. Synthesis and characterization of the polyols by air oxidation of soybean oil and its effect on the morphology and dynamic mechanical properties of poly(vinyl chloride) blends. J Appl Polym Sci. 2015.  https://doi.org/10.1002/app.42102.Google Scholar
  13. 13.
    Dai H, Yang L, Lin B, Wang C, Shi G. Synthesis and characterization of the different soy-based polyols by ring opening of epoxidized soybean oil with methanol, 1, 2-ethanediol and 1, 2-propanediol. J Am Oil Chem Soc. 2009;86:261–7.CrossRefGoogle Scholar
  14. 14.
    Hou CT. Microbial oxidation of unsaturated fatty acids. In: Saul LN, Allen IL, editors. Advances in applied microbiology. Cambridge: Academic Press; 1995. p. 1–23.Google Scholar
  15. 15.
    Fornof AR, Onah E, Ghosh S, Frazier CE, Sohn S, Wilkes GL, et al. Synthesis and characterization of triglyceride-based polyols and tack-free coatings via the air oxidation of soy oil. J Appl Polym Sci. 2006;102:690–7.CrossRefGoogle Scholar
  16. 16.
    Ourique PA, Krindges I, Aguzzoli C, Figueroa CA, Amalvy J, Wanke CH, et al. Synthesis, properties, and applications of hybrid polyurethane–urea obtained from air-oxidized soybean oil. Prog Org Coat. 2017;108:15–24.CrossRefGoogle Scholar
  17. 17.
    Chattopadhyay DK, Raju KVSN. Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci. 2007;32:352–418.CrossRefGoogle Scholar
  18. 18.
    Wang L, Shen Y, Lai X, Li Z, Liu M. Synthesis and properties of crosslinked waterborne polyurethane. J Polym Res. 2011;18:469–76.CrossRefGoogle Scholar
  19. 19.
    Sardon H, Irusta L, Santamaría P, Fernández-Berridi MJ. Thermal and mechanical behaviour of self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl)triethoxysilane (APTES). J Polym Res. 2012;19:1–9.CrossRefGoogle Scholar
  20. 20.
    Sardon H, Irusta L, González A, Fernández-Berridi MJ. Waterborne hybrid polyurethane coatings functionalized with (3-aminopropyl)triethoxysilane: adhesion properties. Prog Org Coat. 2013;76:1230–5.CrossRefGoogle Scholar
  21. 21.
    Sardon H, Irusta L, Fernández-Berridi MJ, Lansalot M, Bourgeat-Lami E. Synthesis of room temperature self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl)triethoxysilane (APTES). Polymer. 2010;51:5051–7.CrossRefGoogle Scholar
  22. 22.
    Uyama H, Kuwabara M, Tsujimoto T, Nakano M, Usuki A, Kobayashi S. Organic–inorganic hybrids from renewable plant oils and clay. Macromol Biosci. 2004;4:354–60.CrossRefGoogle Scholar
  23. 23.
    de Luca MA, Martinelli M, Barbieri CC. Hybrid films synthesised from epoxidised castor oil, γ-glycidoxypropyltrimethoxysilane and tetraethoxysilane. Prog Org Coat. 2009;65:375–80.CrossRefGoogle Scholar
  24. 24.
    Bechi DM, Luca MAD, Martinelli M, Mitidieri S. Organic–inorganic coatings based on epoxidized castor oil with APTES/TIP and TEOS/TIP. Prog Org Coat. 2013;76:736–42.CrossRefGoogle Scholar
  25. 25.
    Allauddin S, Narayan R, Raju K. Synthesis and properties of alkoxysilane castor oil and their polyurethane/urea–silica hybrid coating films. ACS Sustain Chem Eng. 2013;1:910–8.CrossRefGoogle Scholar
  26. 26.
    Tsujimoto T, Uyama H, Kobayashi S. Green nanocomposites from renewable resources: biodegradable plant oil-silica hybrid coatings. Macromol Rapid Commun. 2003;24:711–4.CrossRefGoogle Scholar
  27. 27.
    Brinker CJ, Scherer GW. Sol–gel science: the physics and chemistry of sol–gel processing. Amsterdam: Elsevier; 2013.Google Scholar
  28. 28.
    Frick A, Rochman A. Characterization of TPU-elastomers by thermal analysis (DSC). Polym Test. 2004;23:413–7.CrossRefGoogle Scholar
  29. 29.
    Bianchi O, Repenning GB, Canto LB, Mauler RS, Oliveira RVB. Kinetics of thermo-oxidative degradation of PS-POSS hybrid nanocomposite. Polym Test. 2013;32:794–801.CrossRefGoogle Scholar
  30. 30.
    Monteavaro LL, Riegel IC, Petzhold CL, Samios D. Thermal stability of soy-based polyurethanes. Polímeros. 2005;15:151–5.CrossRefGoogle Scholar
  31. 31.
    Mohd-Rus AZ, Kemp TJ, Clark AJ. Degradation studies of polyurethanes based on vegetable oils. Part 2. Thermal degradation and materials properties. Prog React Kinet Mech. 2009;34:1–41.CrossRefGoogle Scholar
  32. 32.
    Javni I, Petrović ZS, Guo A, Fuller R. Thermal stability of polyurethanes based on vegetable oils. J Appl Polym Sci. 2000;77:1723–34.CrossRefGoogle Scholar
  33. 33.
    Montaudo G, Puglisi C, Scamporrino E, Vitalini D. Mechanism of thermal degradation of polyurethanes. Effect of ammonium polyphosphate. Macromolecules. 1984;17:1605–14.CrossRefGoogle Scholar
  34. 34.
    Foti S, Maravigna P, Montaudo G. Effects of N-methyl substitution on the thermal stability of polyurethanes and polyureas. Polym Degrad Stab. 1982;4:287–92.CrossRefGoogle Scholar
  35. 35.
    Yoshitake N, Furukawa M. Thermal degradation mechanism of α, γ-diphenyl alkyl allophanate as a model polyurethane by pyrolysis-high-resolution gas chromatography/FT-IR. J Anal Appl Pyrol. 1995;33:269–81.CrossRefGoogle Scholar
  36. 36.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70:487–523.CrossRefGoogle Scholar
  37. 37.
    Ozawa T. A new method of analyzing thermogravimetric data. B Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  38. 38.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  39. 39.
    Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.Google Scholar
  40. 40.
    Godoy S, Ferrão M, Gerbase A. Determination of the hydroxyl value of soybean polyol by attenuated total reflectance/Fourier transform infrared spectroscopy. J Am Oil Chem Soc. 2007;84:503–8.CrossRefGoogle Scholar
  41. 41.
    Katumba G, Mwakikunga B, Mothibinyane T. FTIR and raman spectroscopy of carbon nanoparticles in SiO2, ZnO and NiO matrices. Nanoscale Res Lett. 2008;3:421–6.CrossRefGoogle Scholar
  42. 42.
    Adhvaryu A, Erhan SZ. Epoxidized soybean oil as a potential source of high-temperature lubricants. Ind Crop Prod. 2002;15:247–54.CrossRefGoogle Scholar
  43. 43.
    Kantheti S, Sarath PS, Narayan R, Raju KVSN. Synthesis and characterization of triazole rich polyether polyols using click chemistry for highly branched polyurethanes. React Funct Polym. 2013;73:1597–605.CrossRefGoogle Scholar
  44. 44.
    Setyaningrum DL, Riyanto S, Rohman A. Analysis of corn and soybean oils in red fruit oil using FTIR spectroscopy in combination with partial least square. Int Food Res J. 2013;20:1977–81.Google Scholar
  45. 45.
    Shaik A, Narayan R, Raju KVSN. Synthesis and properties of siloxane-crosslinked polyurethane-urea/silica hybrid films from castor oil. J Coat Technol Res. 2014;11:397–407.CrossRefGoogle Scholar
  46. 46.
    Valério A, Araújo PHH, Sayer C. Preparation of poly(urethane-urea) nanoparticles containing açaí oil by miniemulsion polymerization. Polímeros. 2013;23:451–5.CrossRefGoogle Scholar
  47. 47.
    Ay F, Aydinli A. Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Opt Mater. 2004;26:33–46.CrossRefGoogle Scholar
  48. 48.
    Luna-López JA, Carrillo-López J, Aceves-Mijares M, Morales-Sánchez A, Falcony C. FTIR and photoluminescence of annealed silicon rich oxide films. Superficies y vacío. 2009;22:11–4.Google Scholar
  49. 49.
    Kuan H-C, Ma C-CM, Chuang W-P, Su H-Y. Hydrogen bonding, mechanical properties, and surface morphology of clay/waterborne polyurethane nanocomposites. J Polym Sci Part B Polym Phys. 2005;43:1–12.CrossRefGoogle Scholar
  50. 50.
    Xu K, Zhang F, Zhang X, Hu Q, Wu H, Guo S. Molecular insights into hydrogen bonds in polyurethane/hindered phenol hybrids: evolution and relationship with damping properties. J Mater Chem A. 2014;2:8545–56.CrossRefGoogle Scholar
  51. 51.
    Li Y, Zhu Z, Wang X. Synthesis and thermal properties of organically modified palygorskite/fluorinated polyurethane nanocomposites. J Appl Polym Sci. 2017.  https://doi.org/10.1002/app.45460.Google Scholar
  52. 52.
    Gurunathan T, Mohanty S, Nayak SK. Effect of reactive organoclay on physicochemical properties of vegetable oil-based waterborne polyurethane nanocomposites. RSC Adv. 2015;5:11524–33.CrossRefGoogle Scholar
  53. 53.
    Gurunathan T, Arukula R. High performance polyurethane dispersion synthesized from plant oil renewable resources: a challenge in the green materials. Polym Degrad Stab. 2018;150:122–32.CrossRefGoogle Scholar
  54. 54.
    Romanova V, Begishev V, Karmanov V, Kondyurin A, Maitz MF. Fourier transform Raman and Fourier transform infrared spectra of cross-linked polyurethaneurea films synthesized from solutions. J Raman Spectrosc. 2002;33:769–77.CrossRefGoogle Scholar
  55. 55.
    Yang WP, Macosko CW, Wellinghoff ST. Thermal degradation of urethanes based on 4,4′-diphenylmethane diisocyanate and 1,4-butanediol (MDI/BDO). Polymer. 1986;27:1235–40.CrossRefGoogle Scholar
  56. 56.
    Guo A, Javni I, Petrovic Z. Rigid polyurethane foams based on soybean oil. J Appl Polym Sci. 2000;77:467–73.CrossRefGoogle Scholar
  57. 57.
    Bandyopadhyay-Ghosh S, Ghosh SB, Sain M. Synthesis of soy-polyol by two step continuous route and development of soy-based polyurethane foam. J Polym Environ. 2010;18:437–42.CrossRefGoogle Scholar
  58. 58.
    Janowski B, Pielichowski K. A kinetic analysis of the thermo-oxidative degradation of PU/POSS nanohybrid elastomers. Silicon. 2016;8:65–74.CrossRefGoogle Scholar
  59. 59.
    Lin B, Yang L, Dai H, Hou Q, Zhang L. Thermal analysis of soybean oil based polyols. J Therm Anal Calorim. 2009;95:977–83.CrossRefGoogle Scholar
  60. 60.
    Fernandez d’Arlas B, Rueda L, Stefani PM, de la Caba K, Mondragon I, Eceiza A. Kinetic and thermodynamic studies of the formation of a polyurethane based on 1,6-hexamethylene diisocyanate and poly(carbonate-co-ester)diol. Thermochim Acta. 2007;459:94–103.CrossRefGoogle Scholar
  61. 61.
    Lucio B, de la Fuente JL. Kinetic and thermodynamic analysis of the polymerization of polyurethanes by a rheological method. Thermochim Acta. 2016;625:28–35.CrossRefGoogle Scholar
  62. 62.
    Zhang Y, Xia Z, Huang H, Chen H. A degradation study of waterborne polyurethane based on TDI. Polym Test. 2009;28:264–9.CrossRefGoogle Scholar
  63. 63.
    Hawkins WL. Polymer Degradation., Polymer Degradation StabilizationBerlin: Springer; 1984. p. 3–34.CrossRefGoogle Scholar
  64. 64.
    Snegirev AY, Talalov VA, Stepanov VV, Korobeinichev OP, Gerasimov IE, Shmakov AG. Autocatalysis in thermal decomposition of polymers. Polym Degrad Stab. 2017;137:151–61.CrossRefGoogle Scholar
  65. 65.
    Pielichowski K, Kulesza K, Pearce EM. Thermal degradation studies on rigid polyurethane foams blown with pentane. J Appl Polym Sci. 2003;88:2319–30.CrossRefGoogle Scholar
  66. 66.
    Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Postgraduate Program in Materials Science and Engineering (PGMAT)Universidade de Caxias do Sul (UCS)Caxias do SulBrazil
  2. 2.Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  3. 3.Graduate Program in Health SciencesUniversidade de Caxias do Sul (UCS)Caxias do SulBrazil

Personalised recommendations