Journal of Thermal Analysis and Calorimetry

, Volume 137, Issue 6, pp 1857–1866 | Cite as

Chemical compatibility study of BSCF cathode materials with proton-conducting BCY/BCZY/BZY electrolytes

  • Pooja Sawant Mahadik
  • A. N. Shirsat
  • Bandhan Saha
  • Niranjan Sitapure
  • Deepak Tyagi
  • S. VarmaEmail author
  • B. N. Wani
  • S. R. Bharadwaj


Ba0.5Sr0.5Co1−xFexO3−δ (BSCF) is a well-recognized cathode material for IT-SOFC. In this work, Ba0.5Sr0.5Co1−xFexO3−δ (BSCF) where x = 0.2, 0.4, 0.6, 0.8 compositions were synthesized by gel-combustion method using glycine as a fuel. Powder X-ray diffraction confirms the formation of single phase for all the compositions. As we are looking for the application of BSCF cathode for proton-conducting SOFCs, compatibility studies were made with BaCe0.8Y0.2O3−δ (BCY), BaCe0.4Zr0.4Y0.2O3−δ (BCZY) and BaZr0.8Y0.2O3−δ (BZY) electrolytes which are known to have good proton-conducting properties at elevated temperatures. Ba0.5Sr0.5Co0.4Fe0.6O3−δ (BSC4F6) and Ba0.5Sr0.5Co0.2Fe0.8O3−δ (BSC2F8) compositions showed good chemical compatibility with selected electrolyte materials at cell fabrication as well as cell operating temperature making them an appropriate cathode material. Electrical property of all the BSCF compositions was measured in air up to 1073 K by four-probe dc technique. The results showed very little effect of Fe substitution on electrical properties.


Cathode material Gel combustion Compatibility Conductivity 



One of the authors, Dr. Pooja Sawant Mahadik, gratefully acknowledges Department of Atomic Energy (DAE) for providing financial support during the research work.


  1. 1.
    Shao Z, Haile SM. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature. 2004;431:170–3.CrossRefGoogle Scholar
  2. 2.
    Lashtabeg A, Skinner SJ. Solid oxide fuel cells—a challenge for materials chemists? J Mater Chem. 2006;16:3161–70.CrossRefGoogle Scholar
  3. 3.
    Tsipis EV, Kharton VV. Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. J Solid State Electrochem. 2008;12:1367–91.CrossRefGoogle Scholar
  4. 4.
    Jacobson AJ. Materials for solid oxide fuel cells. Chem Mater. 2010;22:660–74.CrossRefGoogle Scholar
  5. 5.
    Fleig J. Solid oxide fuel cell cathodes: polarization mechanisms and modelling of the electrochemical performance. Annu Rev Mater Res. 2003;33:361–82.CrossRefGoogle Scholar
  6. 6.
    Takeda Y, Kanno R, Noda M, Yamamoto O. Perovskite electrodes for high temperature solid electrolyte fuel cells. Bull Inst Chem Res. 1986;64:157–69.Google Scholar
  7. 7.
    Sun C, Hui R, Roller J. Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem. 2010;14:1125–44.CrossRefGoogle Scholar
  8. 8.
    Simner SP, Anderson MD, Engelhard MH, Stevenson JW. Degradation mechanisms of La–Sr–Co–Fe–O3 SOFC cathodes. Electrochem Solid State Lett. 2006;9:478–81.CrossRefGoogle Scholar
  9. 9.
    Ushkalov LM, Vasylyev OD, Pryschepa YG, Samelyuk AV, Melakh VG. Synthesis and study of LSCF perovskites for IT SOFC cathode application. ECS Trans. 2009;25:2421–6.CrossRefGoogle Scholar
  10. 10.
    DiGiuseppe G, Sun L. Electrochemical performance of a solid oxide fuel cell with an LSCF cathode under different oxygen concentrations. Int J Hydrog Energy. 2011;36:5076–87.CrossRefGoogle Scholar
  11. 11.
    Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR. Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3. Solid State Ion. 1995;76:259–71.CrossRefGoogle Scholar
  12. 12.
    Petric A, Huang P, Tietz F. Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ion. 2000;135:719–25.CrossRefGoogle Scholar
  13. 13.
    Hayashia H, Saitoua T, Maruyamaa N, Inabaa H, Kawamurab K, Mori M. Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents. Solid State Ion. 2005;176:613–9.CrossRefGoogle Scholar
  14. 14.
    Gil V, Tartaj J, Moure C. Chemical and thermomechanical compatibility between Ni–GDC anode and electrolytes based on ceria. Ceram Int. 2009;35:839–46.CrossRefGoogle Scholar
  15. 15.
    Ahmadrezaei M, Muhammed Ali SA, Muchtar A, Tan CY, Somalu MR. Thermal expansion behavior of the Ba0.2Sr0.8Co 0.8Fe0.2O3−δ (BSCF) with Sm 0.2Ce0.8O1.9. Ceram Silikaty. 2014;58:46–9.Google Scholar
  16. 16.
    Zhou W, Ran R, Shao Z, Zhuang W, Jia J, Gu H, Jin W, Xu N. Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3−δ oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells. Acta Mater. 2008;56:2687–98.CrossRefGoogle Scholar
  17. 17.
    Kriegel R, Kircheisen R, Töpfer J. Oxygen stoichiometry and expansion behavior of Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Solid State Ion. 2010;181:64–70.CrossRefGoogle Scholar
  18. 18.
    Magnone E. A systematic literature review on BSCF-based cathodes for solid oxide fuel cell applications. J Fuel Cell Sci Technol. 2010;7:064001–12.CrossRefGoogle Scholar
  19. 19.
    Zhu Q, Jin T, Wang Y. Thermal expansion behavior and chemical compatibility of BaxSr1−xCo1−yFeyO3−δ with 8YSZ and 20GDC. Solid State Ion. 2006;177:1199–204.CrossRefGoogle Scholar
  20. 20.
    Liu QL, Khor KA, Chan SH. High-performance low-temperature solid oxide fuel cell with novel BSCF cathode. J Power Sources. 2006;161:123–8.CrossRefGoogle Scholar
  21. 21.
    Duan Z, Yang M, Yan A, Hou Z, Dong Y, Chong Y, Cheng M, Yang W. Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a cathode for IT-SOFCs With a GDC interlayer. J Power Sources. 2006;160:57–64.CrossRefGoogle Scholar
  22. 22.
    Meng G, Jiang C, Ma J, Ma Q, Liu X. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen. J Power Sources. 2007;173:189–93.CrossRefGoogle Scholar
  23. 23.
    Kim YM, Kim-Lohsoontorn P, Bae J. Characterization and electrochemical performance of composite BSCF cathode for intermediate-temperature solid oxide fuel cell. J Electrochem Sci Technol. 2011;2:32–8.CrossRefGoogle Scholar
  24. 24.
    Lin Y, Ran R, Zheng Y, Shao Z, Jin W, Xu N, Ahn J. Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a potential cathode for an anode-supported proton conducting solid-oxide fuel cell. J Power Sources. 2008;180:15–22.CrossRefGoogle Scholar
  25. 25.
    Sawant P, Varma S, Gonal MR, Wani BN, Prakash D, Bharadwaj SR. Effect of Ni concentration on phase stability, microstructure and electrical properties of BaCe0.8Y0.2O3−δ–Ni cermet SOFC anode and its application in proton conducting ITSOFC. Electrochim Acta. 2014;120:80–5.CrossRefGoogle Scholar
  26. 26.
    Manoj N, Bharadwaj SR, Thomas KC, Pillai CGS. Development of PC based four probe electrical conductivity measurement setup. J Instrum Soc India. 2008;38:103–8.Google Scholar
  27. 27.
    Ovenstone J, Jung JI, White JS, Edwards DD, Misture ST. Phase stability of BSCF in low oxygen partial pressures. J Solid State Chem. 2008;81:576–86.CrossRefGoogle Scholar
  28. 28.
    Ma G, Matsumoto H, Iwahara H. Ionic conduction and nonstoichiometry in non-doped BaxCeO3−α. Solid State Ion. 1999;122:237–47.CrossRefGoogle Scholar
  29. 29.
    Iguchi F, Tsurui T, Sata N, Nagao Y, Yugami H. The relationship between chemical composition distributions and specific grain boundary conductivity in Y-doped BaZrO3 proton conductors. Solid State Ion. 2009;180:563–8.CrossRefGoogle Scholar
  30. 30.
    Yamazaki Y, Hernandez-Sanchez R, Haile SM. Cation non-stoichiometry in yttrium-doped barium zirconate: phase behavior, microstructure, and proton conductivity. J Mater Chem. 2010;20:8158–66.CrossRefGoogle Scholar
  31. 31.
    Lia S, Lu Z, Huang X, Wei B, Su W. Thermal, electrical, and electrochemical properties of Lanthanum-doped Ba0.5Sr0.5Co0.8Fe0.2O3–δ. J Phys Chem Solids. 2007;68:1707.CrossRefGoogle Scholar
  32. 32.
    Toprak MS, Darab M, Syvertsen GE, Muhammed M. Synthesis of nanostructured BSCF by oxalate co-precipitation—as potential cathode material for solid oxide fuels cells. Int J Hydrog Energy. 2010;35:9448–54.CrossRefGoogle Scholar
  33. 33.
    Hung IM, Liang CY, Ciou CJ, Lee YC. Conductivity and electrochemical performance of (Ba0.5Sr0.5)0.8La0.2CoO3−δ cathode for intermediate-temperature solid oxide fuel cell. Ceram Int. 2010;36:1937–43.CrossRefGoogle Scholar
  34. 34.
    Ran R, Guo Y, Gao D, Liu S, Shao Z. Effect of foreign oxides on the phase structure, sintering and transport properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ as ceramic membranes for oxygen separation. Sep Purif Technol. 2011;81:384–91.CrossRefGoogle Scholar
  35. 35.
    Stevenson JW, Armstrong TR, Carneim RD, Peederson LR, Weber WJ. Electrochemical properties of mixed conducting perovskites La1−xMxCo1−y FeyO−δ (M = Sr, Ba, Ca). J Electrochem Soc. 1996;143:2722–9.CrossRefGoogle Scholar
  36. 36.
    Jung JI, Misture ST, Edwards DD. Oxygen stoichiometry, electrical conductivity, and thermopower measurements of BSCF (Ba0.5Sr0.5CoxFe1−xO3−δ, 0 ≤ x ≤ 0.8) in air. Solid State Ion. 2010;181:1287–93.CrossRefGoogle Scholar
  37. 37.
    Harvey AS, Yang Z, Infortuna A, Beckel D, Purton JA, Gauckler LJ. Development of electron holes across the temperature-induced semiconductor-metal transition in Ba(1−x)Sr(x)Co(1−y)Fe(y)O(3−δ) (x, y = 0.2–0.8): a soft x-ray absorption spectroscopy study. J Phys Condens Matter. 2009;21:015801–11.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Pooja Sawant Mahadik
    • 4
  • A. N. Shirsat
    • 1
  • Bandhan Saha
    • 1
  • Niranjan Sitapure
    • 2
  • Deepak Tyagi
    • 1
  • S. Varma
    • 1
    • 3
    Email author
  • B. N. Wani
    • 4
  • S. R. Bharadwaj
    • 4
  1. 1.Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Institute of Chemical TechnologyMatunga, MumbaiIndia
  3. 3.Homi Bhabha National InstituteAnushaktinagar, MumbaiIndia
  4. 4.Formerly with Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations