Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3747–3756 | Cite as

Thermal characterization of Aspidosperma pyrifolium Mart. plant drugs

  • Jéssica Cabral Andrade
  • Widson Michael Santos
  • Fernanda Pontes Nóbrega
  • Lucas Ferreira Almeida
  • Felipe Hugo Alencar Fernandes
  • Cleildo Pereira Santana
  • Germano Véras
  • Ana Cláudia Dantas MedeirosEmail author
Article
  • 102 Downloads

Abstract

Aspidosperma pyrifolium Mart. is an endemic plant from Brazilian northeastern, which is widely used in folk medicine to treat dermatitis, gastritis, and malaria due to its anti-inflammatory activity. Thus, the aim of this work was to characterize by analytical techniques A. pyrifolium in different particle sizes to use in the production of tea. For characterization, thermal analysis, optical microscopy, and near-infrared spectroscopy (NIR) techniques were used. After sieving, five samples, named AP01 (> 355 μm), AP02 (≥ 180 μm), AP03 (≥ 155 μm), AP04 (≥ 75 μm), and AP05 (≥ 38 μm), were obtained. Thermogravimetry curves showed three steps of decomposition, with different percentages of mass loss. The second step of decomposition showed the highest mass loss for the five samples. DTA curves of five samples showed a first endothermic peak at 91.70, 96.22, 96.29, 91.09, and 86.32 °C for AP01, AP02, AP03, AP04, and AP05, respectively. Decomposition of all particles occurred from 200 °C. The activation energy obtained through kinetic models showed significant differences between the two methodologies employed. NIR spectra were treated using chemometric tools, including principal component analysis and two PC were necessary to properly separate the samples. The analytical techniques used in this study allowed us to properly characterize the powders and could be used in the production of tea.

Keywords

Quality control Analytical techniques Chemometrics Pereiro Tea 

Notes

References

  1. 1.
    Brandão DO, Guimaraes GP, Santos RL, Júnior FJLR, Silva KMA, Souza FS, Macedo RO. Model analytical development for physical, chemical, and biological characterization of Momordica charantia vegetable drug. J Anal Methods Chem. 2016.  https://doi.org/10.1155/2016/7528297.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fernandes FHA, Boylan F, Salgado HRN. Quality standardization of herbal medicines of Spondias dulcis Parkinson using analytical and microbiological analysis. J Therm Anal Calorim. 2018;134:1923–8.CrossRefGoogle Scholar
  3. 3.
    Vyazovkin S, Chrissafis K, Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.CrossRefGoogle Scholar
  4. 4.
    Barbadillo F, Fuentes A, Naya S, Cao R, Mier JR, Artiaga R. Evaluating the logistic mixture model on real and simulated TG curves. J Therm Anal Calorim. 2007;87:223–7.CrossRefGoogle Scholar
  5. 5.
    Fernandes FHA, Almeida VE, Medeiros FD, Silva PCD, Simões MOS, Veras G, Medeiros ACD. Evaluation of compatibility between Schinopsis brasiliensis Engler extract and pharmaceutical excipients using analytical techniques associated with chemometric tools. J Therm Anal Calorim. 2016;123:2531–42.CrossRefGoogle Scholar
  6. 6.
    Melo CAD, Silva P, de Araújo Gomes A, Fernandes DDS, Véras G, Medeiros ACD. Classification of tablets containing dipyrone, caffeine and orphenadrine by near infrared spectroscopy and chemometric tools. J Braz Chem Soc. 2013;24:991–7.CrossRefGoogle Scholar
  7. 7.
    Santos GA, Pereira AB, Korndörfer GH. Use of analysis system by near infrared (NIR) for the analysis of organic matter and clay fraction in soils and leaf levels of silicon and nitrogen in sugar cane. Biosci J. 2010;26:100–8.Google Scholar
  8. 8.
    Almeida VL, Silva CG, Silva AF, Campana PRV, Foubert K, Lopes JCD, Pierts L. Aspidosperma species: a review of their chemistry and biological activities. J Ethnopharmacol. 2018;231:125–40.CrossRefGoogle Scholar
  9. 9.
    Ceravolo IP, Zani CL, Figueredo FJB, Kohlhoff M, Santaa AEG, Krettli AU. Aspidosperma pyrifolium, a medicinal plant from the Brazilian caatinga, displays a high antiplasmodial activity and low cytotoxicity. Malar J. 2018;17:436–47.CrossRefGoogle Scholar
  10. 10.
    Correia LP, Santana CP, Medeiros ACD, Macêdo RO. Sideroxylon obtusifolium herbal medicine characterization using pyrolysis GC/MS, SEM and different thermoanalytical techniques. J Therm Anal Calorim. 2016;123:993–1001.CrossRefGoogle Scholar
  11. 11.
    Correia LP, Santana CP, Silva KMA, Ramos Júnior FJL, Lima RSC, Medeiros ACD, Macêdo RO. Physical and chemical characteristics of Maytenus rigida in different particle sizes using SEM/EDS, TG/DTA and pyrolysis GC–MS. J Therm Anal Calorim. 2018;131:743–52.CrossRefGoogle Scholar
  12. 12.
    Zhou Q, Sheng G. Pyrolytic and kinetic characteristics of the thermal decomposition of Perilla frutescens polysaccharide. PLoS ONE. 2012;7:e52597.  https://doi.org/10.1371/journal.pone.0052597.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Messiades DMS. Estudo das propriedades biológicas, fitoquímicas e toxicológicas de Aspidosperma pyrifolium Mart. Brazil. Masters dissertation, Universidade Estadual da Paraíba. 2014; p. 137.Google Scholar
  14. 14.
    Araújo JX, Antheaume C, Trindade RCP, Schmitt M, Bourguignon JJ, Sant’Ana AEG. Isolation and characterisation of the monoterpenoid indole alkaloids of Aspidosperma pyrifolium. Phytochem Rev. 2007;6:183–8.CrossRefGoogle Scholar
  15. 15.
    Santana CP, Fernandes FHA, Brandão DO, Silva CD, Correia LP, Nóbrega FP, Medeiros FD, Diniz PHGD, Véras G, Medeiros ACD. Compatibility study of dry extract of Ximenia americana L. and pharmaceutical excipients used in solid state. J Therm Anal Calorim. 2018;133:603–17.CrossRefGoogle Scholar
  16. 16.
    Iwanek E, Glinski M. Application of thermal analysis in determining properties of herbaceous materials. J Chem Educ. 2018;95:1359–64.CrossRefGoogle Scholar
  17. 17.
    Wesołowski M, Konieczyński P. Thermoanalytical, chemical and principal component analysis of plant drugs. Int J Pharm. 2003;262:29–37.CrossRefGoogle Scholar
  18. 18.
    Fernandes FHA, Santana CP, Silva CD, Simões MOS, Kaneko TM, Medeiros ACD. Development of a sunscreen by thermal compatibility study using Schinopsis brasiliensis Engler extract as preservative. J Therm Anal Calorim. 2018;131:753–63.CrossRefGoogle Scholar
  19. 19.
    Medeiros ACD, Medeiros IA, Macêdo RO. Thermal studies of Albizia inopinata crude extract in the presence of cyclodextrin and Aerosil by TG and DSC coupled to the photovisual system. Thermochim Acta. 2002;392–393:93–8.CrossRefGoogle Scholar
  20. 20.
    Correia LP, Procópio JVV, Santana CP, Pinto MF, Moura EA, Santos AFO, Macêdo RO. Herbal medicine physical quality evaluation by thermal analysis using adapted Ozawa method. J Therm Anal Calorim. 2015;122:207–14.CrossRefGoogle Scholar
  21. 21.
    Venkatesh M, Ravi P, Tewari SP. Isoconversional kinect analysis of decomposition of nitroimidazoles: Fridman method vs Flynn–Wall–Ozawa method. J Phys Chem A. 2013;117:10162–9.CrossRefGoogle Scholar
  22. 22.
    Tita D, Fulias A, Tita B. Thermal stability of ketoprofen—active substance and tablet. J Therm Anal Calorim. 2011;105:501–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da SaúdeUniversidade Estadual da ParaíbaCampina GrandeBrazil
  2. 2.Unifacisa, Centro UniversitárioCampina GrandeBrazil
  3. 3.Centro de Tecnologia em Desenvolvimento de Medicamentos (CT-Tecnologia Farmacêutica), Faculdade de FarmáciaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  4. 4.Laboratório de Química Analítica e Quimiometria, Centro de Ciências e TecnologiaUniversidade Estadual da ParaíbaCampina GrandeBrazil

Personalised recommendations