Gold- and silver-containing bionanocomposites based on humic substances extracted from coals

A thermal analysis study
  • Spartak S. KhutsishviliEmail author
  • Nikolay I. Tikhonov
  • Dmitrii V. Pavlov
  • Tamara I. Vakul’skaya
  • Maksim V. Penzik
  • Aleksander N. Kozlov
  • Marina V. Lesnichaya
  • Galina P. Aleksandrova
  • Boris G. Sukhov


Thermal stability, structural peculiarities and thermal destruction of functional groups of the matrix, which are responsible for the stabilization of the nanosystems, of the gold- and silver-containing medicinally important water-soluble nanocomposites synthesized from therapeutic humic substances, isolated from brown coal of Baga Nuur field of Mongolian sources, have been studied. A crucial problem in biomedical and engineering application of the silver- and gold-containing nanocomposites is their stability upon heating, for example, during sterilization at high temperatures in medicine or laser action, which can heat a system, in plasmon technologies. All compounds have been investigated by complex modern physical–chemical methods (electron paramagnetic resonance and infrared spectroscopies, X-ray diffraction analysis, transmission electron microscopy and others). Thermal analysis of Ag0 and Au0 nanocomposites on the basis of humic matrices, as well as the initial humic substance, has been carried out. It is shown that the thermal decomposition of the nanocomposites depends on the nature of the metal. It is found that stable zero-valent nanoparticles of noble metals with an average particle size of 6–17 nm are formed in a natural matrix. The nanocomposites obtained are aggregatively stable for a long time, preserving their properties intact, that is extremely important for promising medicinal substances.


Nanocomposite Thermostability EPR Silver and gold nanoparticles Humic substance 



The authors are grateful to the Baikal Analytical Center for the special measurements. Thermoanalytical studies are performed by Penzik M.V. and Kozlov A.N. in the framework of the scientific project III.17.1.2 of the program of fundamental research of SB RAS, reg. No AAAA-A17-117030310448-0 on the equipment of the “High-temperature circuit” (ESI SB RAS).


  1. 1.
    Boisselier E, Didier A. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38:1759–82.Google Scholar
  2. 2.
    Hill JW. Collodial silver medical uses. Toxicology & manufacture. Washington: Clear Springs Press; 2009.Google Scholar
  3. 3.
    Daraee H, Eatemadi A, Abbasi E, Aval SF, Kouhi M, Akbarzadeh A. Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44:410–22.Google Scholar
  4. 4.
    Pomogailo AD, Dzhardimalieva GI. Nanostructured materials preparation via condensation ways. Dordrecht: Springer; 2014.Google Scholar
  5. 5.
    Pallem VL, Stretz HA, Wells MJM. Evaluating aggregation of gold nanoparticles and humic substances using fluorescence spectroscopy. Environ Sci Technol. 2009;43:7531–5.Google Scholar
  6. 6.
    Stevenson FJ. Humus chemistry: genesis, composition and reactions. 2nd ed. New York: Willey; 1994.Google Scholar
  7. 7.
    Sutton R, Sposito G. Molecular structure in soil humic substances: the new view. Environ Sci Technol. 2005;39:9009–15.Google Scholar
  8. 8.
    Klöcking R, Helbig B. Medical aspect and applications of humic substances. In: Steinbüchel A, Marchessault RH, editors. Biopolymers for medical and pharmaceutical applications. Weinheim: Wiley; 2005. p. 3–16.Google Scholar
  9. 9.
    Xu J, Wu J, He Y. Functions of natural organic matter in changing environment. Dordrecht: Springer; 2013.Google Scholar
  10. 10.
    Steinberg CEW. Ecology of humic substances in freshwaters. Berlin: Springer; 2003.Google Scholar
  11. 11.
    Perminova IV, Hatfield K, Hertkorn N. Use of humic substances to remediate polluted environments: from theory to practice. Dordrecht: Springer; 2005.Google Scholar
  12. 12.
    Piccolo A. The supramolecular structure of humic substances. Soil Sci. 2001;166:810–32.Google Scholar
  13. 13.
    Khutsishvili SS, Vakul’skaya TI, Aleksandrova GP, Sukhov BG. Strong stabilization properties of humic substance matrixes for silver bionanocomposites. Micro Nano Lett. 2017;12:418–21.Google Scholar
  14. 14.
    Antonelli ML, Calace N, Fortini C, Petronio BM, Pietroletti M, Pusceddu P. Calorimetric investigation of complex formation of some humic compounds. J Therm Anal Calorim. 2002;70:291–7.Google Scholar
  15. 15.
    Lesnichaya MV, Aleksandrova GP, Dolmaa G, Sapozhnikov AN, Sukhov BG, Regdel D, Trofimov BA. Synthesis of silver-containing nanocomposites based on humic substances of brown coal and their antioxidant activity. Dokl Chem. 2014;456:72–5.Google Scholar
  16. 16.
    Lesnichaya MV, Aleksandrova GP, Sukhov BG, Trofimov BA, Dolmaa G, Nomintsetseg B, Regdel D, Sapozhnikov AN. Features of gold nanoparticle formation in matrices of humic substances of different origin. Dokl Chem. 2015;460:13–6.Google Scholar
  17. 17.
    Kučerík J, Kislinger J, Majzlík P, Pekař M. Correlation of humic substances chemical properties and their thermo-oxidative degradation kinetics. J Therm Anal Calorim. 2009;98:207–14.Google Scholar
  18. 18.
    Rotaru A, Nicolaescu I, Rotaru P, Neaga C. Thermal characterization of humic acids and other components of raw coal. J Therm Anal Calorim. 2008;92:297–300.Google Scholar
  19. 19.
    Tikhonov NI, Khutsishvili SS, Lesnichaya MV, Dolmaa G, Vakul’skaya TI, Aleksandrova GP, Sukhov BG. Paramagnetic properties and antioxidant activity of metal-containing bionanocomposites based on humic substances. Magn Reson Solids. 2016;18:16104.Google Scholar
  20. 20.
    Poole CP. Electron spin resonance: a comprehensive treatise on experimental techniques. 2nd ed. Dover: Dover Publications; 1997.Google Scholar
  21. 21.
    Barret CA, Massalsky TB. structure of metals. New York: McGraw-Hill; 1966.Google Scholar
  22. 22.
    Pilawa B, Więckowski AB. Groups of paramagnetic centres in coal samples with different carbon contents. Res Chem Intermed. 2007;33:825–39.Google Scholar
  23. 23.
    González-Pérez M, Martin-Neto L, Colnago LA, Milori DMBP, de Camargo OA, Berton R, Bettiol W. Characterization of humic acids extracted from sewage sludge-amended oxisols by electron paramagnetic resonance. Soil Till Res. 2006;91:95–100.Google Scholar
  24. 24.
    Eichelbaum M, Rademann K, Hoell A, Tatchev DM, Weigel W, Stößer R, Pacchioni G. Photoluminescence of atomic gold and silver particles in soda-lime silicate glasses. Nanotechnology. 2008;19:135701.Google Scholar
  25. 25.
    Khutsishvili SS, Tikhonov NI, Lesnichaya MV, Dolmaa G, Vakul’skaya TI, Aleksandrova GP, Sukhov BG. Paramagnetic bioactive silver- and gold-containing nanocomposites based on humic substances. Funct Mater Lett. 2017;10:1650077.Google Scholar
  26. 26.
    Moon HR, Kim JH, Suh MP. Redox-active porous-organic framework producing silver nanoparticles from AgI ions at room temperature. Angew Chem Int Ed Engl. 2005;44:1261–5.Google Scholar
  27. 27.
    Lesnichaya MV, Sukhov BG, Aleksandrova GP, Gasilova ER, Vakul’skaya TI, Khutsishvili SS, Sapozhnikov AN, Klimenkov IV, Trofimov BA. Chiroplasmonic magnetic gold nanocomposites produced by one-step aqueous method using κ-carrageenan. Carbohydr Polym. 2017;175:18–26.Google Scholar
  28. 28.
    Mercê ALR, Landaluze JS, Mangrich AS, Szpoganicz B, Sierakowski MR. Complexes of arabinogalactan of Pereskia aculeata and Co2+, Cu2+, Mn2+, and Ni2+. Biores Technol. 2001;76:29–37.Google Scholar
  29. 29.
    Tarasova OA, Tatarinova IV, Vakul’skaya TI, Khutsishvili SS, Smirnov VI, Klyba LV, Prozorova GF, Mikhaleva AI, Trofimov BA. Propargyloxy- and allenyloxymethylferrocenes: synthesis and oligomerization. J Organomet Chem. 2013;745–746:1–7.Google Scholar
  30. 30.
    Kučerík J, Kovář J, Pekař M. Thermoanalytical investigation of lignite humic acids fractions. J Therm Anal Calorim. 2004;76:55–65.Google Scholar
  31. 31.
    Ur’yash VF, Larina VN, Kokurina NY, Novoselova NV. The thermochemical characteristics of cellulose and its mixtures with water. Russ J Phys Chem A. 2010;84:915–21.Google Scholar
  32. 32.
    Jakab E, Bora Á, Sebestyén Z, Borsa J. Thermal decomposition of chemically treated cellulosic fibres. J Therm Anal Calorim. 2018;132:433–43.Google Scholar
  33. 33.
    Provenzano MR, Senesi N. Thermal properties of standard reference humic substances by differential scanning calorimetry. J Therm Anal Calorim. 1999;57:517–26.Google Scholar
  34. 34.
    Chukhareva NV, Shishmina LV, Novikov AA. Kinetics of the degradation of peat humic acids. Solid Fuel Chem. 2003;37:30–41.Google Scholar
  35. 35.
    Martyniuk H, Więkowska J, Lipman J. The study of influence of metal ions on thermal decomposition of humic acids. J Therm Anal Calorim. 2001;65:711–21.Google Scholar
  36. 36.
    Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV. Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev. 2008;77:233–57.Google Scholar
  37. 37.
    Ramezanzadeh B, Attar MM, Farzam M. Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite. J Therm Anal Calorim. 2011;103:731–9.Google Scholar
  38. 38.
    Babu VR, Kim C, Kim S, Ahn C, Lee Y. Development of semi-interpenetrating carbohydrate polymeric hydrogels embedded silver nanoparticles and its facile studies on E. coli. Carbohydr Polym. 2010;81:196–202.Google Scholar
  39. 39.
    Aleksandrova GP, Lesnichaya MV, Myachin YA, Sukhov BG, Trofimov BA. Effect of silver nanoparticles on the thermal characteristics of nanocomposites of galactose-containing polysaccharides. Dokl Chem. 2011;439:187–9.Google Scholar
  40. 40.
    Gendler TS, Novakova AA, Prudnikov VN. Comparative analysis of γ-Fe2O3 nanoparticles magnetic interactions in different polymeric nanocomposites. Solid State Phenom. 2009;152:269–72.Google Scholar
  41. 41.
    Zakis GF, transl. ed. Joyce T, Brezny R. Functional analysis of lignins and their derivatives. Tappi Pr, New York; 1994.Google Scholar
  42. 42.
    Lishtvan II, Yanuta YG, Abramets AM, Monich GS, Glukhova NS, Aleinikova VN. Interactions of humic acids with metal ions in the water medium. J Water Chem Technol. 2012;34:211–7.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Spartak S. Khutsishvili
    • 1
    • 2
    Email author
  • Nikolay I. Tikhonov
    • 1
  • Dmitrii V. Pavlov
    • 1
  • Tamara I. Vakul’skaya
    • 1
  • Maksim V. Penzik
    • 1
    • 3
  • Aleksander N. Kozlov
    • 3
  • Marina V. Lesnichaya
    • 1
  • Galina P. Aleksandrova
    • 1
  • Boris G. Sukhov
    • 1
    • 2
  1. 1.A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of SciencesIrkutskRussia
  2. 2.Irkutsk Scientific Center of the Siberian Branch of the Russian Academy of SciencesIrkutskRussia
  3. 3.Melentiev Energy Systems Institute of the Siberian Branch of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations