Advertisement

Investigation of thermal and kinetic behavior of the Stryphnodendron adstringens dry extract with antimicrobial activity

  • Nathália Alexandra de Oliveira Cartaxo-FurtadoEmail author
  • Deysiane Oliveira Brandão
  • Fernando José de Lima Ramos Júnior
  • Karla Monik Alves Silva
  • Rui Oliveira Macêdo
Article
  • 26 Downloads

Abstract

Stryphnodendron adstringens Coville (Fabaceae), popularly known as “barbatimão,” is a Brazilian Cerrado tree, rich in tannins. It is used as antinociceptive, in the treatment of vaginal inflammations and infections in general. The objective was to investigate the thermal, kinetic behavior and the antimicrobial activity of the dry extract of S. adstringens. The dry extract was obtained from the leaves of S. adstringens and submitted to the thermal characterization by thermogravimetry (TG), at different atmospheres and heating rates, and by kinetic degradation by Ozawa model. Furthermore, in order to evaluate the antimicrobial activity, the minimum inhibitory concentration of the dry extract against pathogenic microorganisms was obtained. The TG curves of the sample presented six stages of thermal decomposition in both atmospheres with the beginning of decomposition of compounds in the third stage, reaching up to 16.55% of mass loss, and the fourth step achieved a maximum decomposition of 45% mass loss under inert atmosphere. The DTA curve profile of the extract presented two exothermic events with a higher enthalpy in the first event. Thermal decomposition was shown to be a zero-order reaction by the Ozawa method. The extract was presented to be sensitive to all strains tested, thus showing potent antibacterial and antifungal action (minimum inhibitory concentration < 12.5 mg mL−1). Thus, it is concluded that the characterization was done by appropriate analytical techniques and the dry extract was shown to be an active agent against all microorganisms tested, prospecting a new herbal medicine with antimicrobial activity.

Keywords

Dry extract Thermal analysis Characterization Kinetic Antimicrobial activity 

Notes

Acknowledgements

The authors would like to thank the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)” for supporting this work. Additionally, the authors would like to thank Edit my English company for the helping in the review of this manuscript.

References

  1. 1.
    Brazil M. Mapeamento do Uso e Cobertura do Cerrado: Projeto Terra Class Cerrado 2013. Ministério do Meio Ambiente (MMA). Brasília: MMA; 2015.Google Scholar
  2. 2.
    Jesus RPFS, Costa MRM, Bastos IV, Couto GBL, Pereira MSV, Souza IA. Ação antibacteriana e antiaderente de Pithecellobium cochliocarpum(gomez) Macbr sobre microrganismos orais. Odontol Clín Cient. 2010;9:331–5.Google Scholar
  3. 3.
    Kantati YT, Kodjo KM, Dogbeavou KS, Vaudry D, Leprince J, Gbeassor M. Ethnopharmacological survey of plant species used in folk medicine against central nervous system disorders in Togo. J Ethnopharmacol. 2016;181:214–20.CrossRefGoogle Scholar
  4. 4.
    Gupta D, Dubey J, Kuma M. Phytochemical analysis and antimicrobial activity of some medicinal plants against selected common human pathogenic microorganisms. Asian Pac J Trop Dis. 2016.  https://doi.org/10.1016/S2222-1808(15)60978-1.Google Scholar
  5. 5.
    Sabino APL, Eustáquio LMS, Miranda ACF, Biojone C, Mariosa TN, Gouvêa CMCP. Stryphnodendron adstringens (“Barbatimão”) Leaf Fraction: chemical characterization, antioxidant activity, and cytotoxicity towards human breast cancer cell lines. Appl Biochem Biotechnol. 2018;184:1375–89.CrossRefGoogle Scholar
  6. 6.
    Nascimento AM, Guedes PT, Castilho RO, Viana-Soares CD. Stryphnodendron adstringens (Mart.) Coville (Fabaceae) proanthocyanidins quantitation by RP-HPLC. Braz J Pharm. 2013;49:549–58.CrossRefGoogle Scholar
  7. 7.
    Glasenapp JS, Martins ER, Casali VWD, Cruz CDI, Barbosa PB. Characterization of diversity and genetic structure in natural populations of Stryphnodendron adstringens (Mart.) Coville by means of allozyme markers. Rev Bras Plantas Med. 2014.  https://doi.org/10.1590/s1516-05722014000200008.Google Scholar
  8. 8.
    Fonseca FN, Silva AH, Leal LKAM. Justicia pectoralis Jacq., Acanthaceae: preparation and characterisation of the plant drug including chromatographic analysis by HPLC-PDA. Rev Bras Farmacogn. 2010.  https://doi.org/10.1590/S0102-695X2010005000049.Google Scholar
  9. 9.
    Correia LP, Santana CP, Medeiros ACD, Macêdo RO. Sideroxylon obtusifolium herbal medicine characterization using pyrolysis GC/MS, SEM and different thermoanalytical techniques. J Therm Anal Calorim. 2015;123:993–1001.CrossRefGoogle Scholar
  10. 10.
    Costa ACBP, Pereira CA, Freire F, Junqueira JC, Jorge AOC. Atividade antifúngica dos extratos glicólicos de Rosmarinus officinalis Linn e Syzygium cumini Linn. sobre cepas clínicas de Candida albicans, Candida glabrata e Candida tropicalis. Rev Odontol UNESP. 2009;38:111–6.Google Scholar
  11. 11.
    Araújo AAS, Mercuri LP, Seixas SRSS, Storpirtis S, Matos JR. Determinação dos teores de umidade e cinzas de amostras comerciais de guaraná utilizando métodos convencionais e análise térmica. Rev Bras Cienc Farm. 2006.  https://doi.org/10.1590/S1516-93322006000200013.Google Scholar
  12. 12.
    Frade JC, Ribeiro I, Vasconcelos JGT, Rodrigues J. Chemotaxonomic application of Py-GC/MS: identification of lacquer trees. J Anal Appl Pyrolysis. 2010.  https://doi.org/10.1016/j.jaap.2010.06.006.Google Scholar
  13. 13.
    Oliveira EJ, Alvarez EDA, Lima NGPB, Macedo RO. Usefulness of pyrolysis coupled to gas chromatography/mass spectrometry for evaluating the reproducibility of commercial samples of Cymbopogon citratus Stapf., Poaceae. Braz J Pharmacog. 2010.  https://doi.org/10.1590/S0102-695X2010000100019.Google Scholar
  14. 14.
    Wang L, Wang C, Pan Z, Sun Y, Zhu X. Application of pyrolysis-gas chromatography and hierarchical cluster analysis to the discrimination of the Chinese traditional medicine Dendrobium candidum Wall. ex Lindl. J Anal Appl Pyrolysis. 2011.  https://doi.org/10.1016/j.jaap.2010.09.010.Google Scholar
  15. 15.
    Brandão DO, Guimarães GP, Santos RL, Ramos FJL, Silva KMA, Souza FS, Macêdo RO. Model analytical development for physical, chemical, and biological characterization of momordica charantia vegetable drug. J Anal Methods Chem. 2016.  https://doi.org/10.1155/2016/7528297.Google Scholar
  16. 16.
    Guimarães GP, Santos RL, Brandão DO, Cartaxo-Furtado NAO, Cavalcanti ALM, Macêdo RO. Thermoanalytical characterization of herbal drugs from Poincianella pyramidalis in different particle sizes. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-016-6076-4.Google Scholar
  17. 17.
    Aragão CFS, Souza FS, Barros ACS, Veras JWE, Barbosa JM, Macêdo RO. Aplicação da termogravimetria (TG) no controle de qualidade da milona (Cissampelos sympodialis Eichl.) Menispermaceae. Rev Bras Farmacogn. 2002.  https://doi.org/10.1590/S0102-695X2002000300029.Google Scholar
  18. 18.
    Silva Júnior JOC, Pereira NL. Avaliação da permeação in vitro de gel fitoterápico contendo extrato seco por nebulização de Shymphytum officinale L. Rev Bras Farm. 2009;90:03–9.Google Scholar
  19. 19.
    Camelo SRP, Costa RS, Vasconcelos F, Teixeira FM, Ribeiro-Costa RM, Barbosa WLR, Race JOS. Physicochemical characterization and quantification of total anthraquinones of Vismia guianensis (Aubl.) choisy. Int J Pharm Sci Res. 2012.  https://doi.org/10.13040/IJPSR.0975-8232.3(7).2064-70.Google Scholar
  20. 20.
    Costa CARA, Kohn DO, Lima VM, Gargano AC, Flório JC, Costa M. The gabaergic system contributes to the anxiolytic-like effect of essential oil from Cymbopogon citratus (lemongrass). J Ethnopharmacol. 2011.  https://doi.org/10.1016/j.jep.2011.07.003.Google Scholar
  21. 21.
    Giuffrida F, Destaillats F, Egart MH, Hug B, Golay P, Skibsted LH, Dionisi F. Activity and thermal stability of antioxidants by differential scanning calorimetry and electron spin resonance spectroscopy. Food Chem. 2006.  https://doi.org/10.1016/j.foodchem.2006.03.010.Google Scholar
  22. 22.
    Benicio DA, Neto VQ, Sousa JG. Avaliação das propriedades físicoquímicas e da composição química parcial do óleo de sementes de Nim Indiano (Azadirachta indica A. Juss.), cultivado no município de Patos—Paraíba. Biofarm. 2010;4:22–33.Google Scholar
  23. 23.
    Politi FAZ, Moreira RRD, Salgado HRN, Pietro RCLR. Testes preliminares de motilidade intestinal e toxicidade oral aguda com extrato de cascas pulverizadas de Endopleura uchi (Huber) Cuatrec. (Humiriaceae) em 72 camundongos. Rev Pan-Amazônica Saúde. 2010.  https://doi.org/10.5123/S2176-62232010000100026.Google Scholar
  24. 24.
    CLSI. National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. M7-A8 CLSI, Wayne, PA; 2009.Google Scholar
  25. 25.
    Correia LP, Procópio JVV, Santana CP, Santos AFO, Cavalcante HMM, Macêdo RO. Characterization of herbal medicine with different particle sizes using pyrolysis GC/MS, SEM, and thermal techniques. J Therm Anal Calorim. 2013;111:1691–8.CrossRefGoogle Scholar
  26. 26.
    Farmacopeia Brasileira - parte 1. 4 ed. São Paulo: Editora Atheneu; 1988.Google Scholar
  27. 27.
    Storpitis S, José EG. Ciências Farmacêuticas: Biofarmacotécnica. 4th ed. Rio de Janeiro: Guanabara Koogan Farmacopeia Brasileira; 2009.Google Scholar
  28. 28.
    Francioso O, Ferrari E, Saladini M, Montecchio D, Gioacchini P, Ciavatta C, et al. TG-DTA, DRIFT and NMR characterisation of humic-like fractions from olive wastes and amended soil. J Hazard Mater. 2007;149:408–17.CrossRefGoogle Scholar
  29. 29.
    Chaves TP, Fernandes FHA, Santana CP, Santos JS, Medeiros FD, Felismino DC, Santos VL, Catão RM, Coutinho HDM, Medeiros ACD. Evaluation of the interaction between the Poincianella pyramidalis (Tul.)LP Queiroz extract and antimicrobials using biological and analytical models. PLoS ONE. 2016.  https://doi.org/10.1371/journal.pone.0155532.Google Scholar
  30. 30.
    Lachman L, Lieberman HA, Kanig JL. Teoria e prática na indústria farmacêutica. Lisboa: Fundação Calouste Gulbenkian. 2001;2:651–83.Google Scholar
  31. 31.
    Saraiva AM, Castro RHA, Cordeiro RP, Peixoto Sobrinho TJS, Castro VTNA, Amorim ELC, Xavier HS, Pisciottano MNC. In vitro evaluation of antioxidant, antimicrobial and toxicity properties of extracts of Schinopsis brasiliensis Engl. (Anacardiaceae). Afr J Pharm Pharmacol. 2011;5:1724–31.CrossRefGoogle Scholar
  32. 32.
    ORLANDO, S.C. Avaliação da atividade antimicrobiana do extrato hidroalcoólico bruto da cascas do Stryphnodendron adstrigens (Martius) Coville (Barbatimão). 2005. 88f. Dissertação (Mestrado em Promoção à Saúde) – Universidade de Franca, Franca, SP, 2005.Google Scholar
  33. 33.
    Pinho L, Souza PNS, Sobrinho EM, Almeida AC, Martins ER. Atividade antimicrobiana de extratos hidro alcóolicos das folhas de alecrim- pimenta, aroeira, barbatimão, erva baleeira e do farelo da casca de pequi. Cienc Rural. 2012;42:326–31.CrossRefGoogle Scholar
  34. 34.
    Romero CD, Chopin SF, Buck G, Martinez E, Garcia M, Bixby L. Antibacterial properties of common herbal remedies of the southwest. J Ethnopharmacol. 2005;99:253–7.CrossRefGoogle Scholar
  35. 35.
    Oliveira DR, Júnior WSF, Bitu VCN, Pinheiro PG, Menezes CDA, Junior FEB, Albuquerque UP, Kerntopf MR, Coutinho HDM, Fachinetto R, Menezes IRA. Ethnopharmacological study of Stryphnodendron rotundifolium in two communities in the semi-arid region of northeastern Brazil. Rev Bras Farmacogn. 2014.  https://doi.org/10.1016/j.bjp.2014.03.003.Google Scholar
  36. 36.
    Audi EA, Toledo CEM, Santos FS, Bellanda PR, Alves-do-Prado W, Ueda-Nakamura T, Nakamura CV, Sakiragui CM, Bersani-Amado CA, Mellho JCP. Biological activity and quality control of extract and stem bark from Stryphnodendron adstringens. Acta Farm Bom. 2004;23:328–33.Google Scholar
  37. 37.
    Fiori GML, Fachin AL, Correa VSC, Bertoni BW, Giuliatti S, Amui SF, França SC, Pereira AMS. Antimicrobial activity and rates of tannins in Stryphnodendron adstringens Mart. accessions collected in the Brazilian Cerrado. Am J Plant Sci. 2013.  https://doi.org/10.4236/ajps.2013.411272.Google Scholar
  38. 38.
    Soares SP, Vinholisa LAC, Silva MLA. Atividade antibacteriana do extrato hidroalcoólico bruto de Stryphnodendron adstringens sobre microorganismos da cárie dental. Rev Odonto Ciênc. 2008;23:141–4.Google Scholar
  39. 39.
    Souza TM, Moreira RRD, Pietro RCLR, Isaac VLB. Avaliação da atividade anti séptica de extrato seco de Stryphnodendron adstringens (Mart.) Coville e de preparação cosmética contendo este extrato. Rev Bras Farmacogn. 2007.  https://doi.org/10.1590/S0102-695X2007000100015.Google Scholar
  40. 40.
    Toledo CE, Britta EA, Ceole LF, Silva ER, de Mello JC, Dias Filho BP, Nakamura CV. Ueda-Nakamura Antimicrobial and cytotoxic activities of medicinal plants of the Brazilian cerrado, using Brazilian cachaa as extractor liquid. J Ethnopharmacol. 2011.  https://doi.org/10.1016/j.jep.2010.10.021.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Nathália Alexandra de Oliveira Cartaxo-Furtado
    • 1
    • 2
    Email author
  • Deysiane Oliveira Brandão
    • 1
    • 2
  • Fernando José de Lima Ramos Júnior
    • 1
    • 2
  • Karla Monik Alves Silva
    • 1
    • 2
  • Rui Oliveira Macêdo
    • 1
    • 2
  1. 1.Department of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical SciencesUniversidade Federal de PernambucoCidade Universitária, RecifeBrazil
  2. 2.Unified Laboratories of Pharmaceutical Development and Assays, Department of Pharmaceutical SciencesUniversidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations