Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks

  • Muhammad Usman Sajid
  • Hafiz Muhammad AliEmail author
  • Abu Sufyan
  • Danial Rashid
  • Saad Ullah Zahid
  • Wajih Ur Rehman


The present study comprises experimental investigation on heat transfer and hydrodynamic characteristics of TiO2 nanofluid as coolant in wavy channel heat sinks having three different channel configurations. The performance of TiO2 nanofluids having concentrations of 0.006, 0.008, 0.01 and 0.012 vol% is compared with that of distilled water under laminar regime at heating powers of 25 W, 35 W and 45 W. Results indicated that for all heat sinks, nanofluids showed better heat transfer characteristics than distilled water. With an increase in heating power, TiO2 nanofluid thermal performance was decreased. Using 0.012% TiO2 nanofluids, minimum wall base temperature and maximum enhancement in Nusselt number are noted as 33.85 °C and 40.57%, respectively, for heat sink with wavelength of 5 mm and amplitude of 0.5 mm corresponding to Reynolds number of 894 at heating power of 25 W. Pumping power requirement is function of flow rate and pressure drop, and its maximum value of 0.0284 W is associated with heat sink with minimum wavelength. Moreover, variation in wavelength of channel is found to have dominating effect on heat transfer performance of heat sink as compared to the width of channel.


TiO2 nanofluids Wavy channels Heat transfer performance Pumping power Reynolds number 

List of symbols


Cross-sectional area of channel (m2)


Effective surface area of sink (m2)


Specific heat (J kg−1 °C−1)


Diameter (m)


Hydraulic diameter (m)


Convective heat transfer coefficient (W m−2 °C−1)


Fin height of heat sink (m)


Distance between wall and thermocouple (m)


Thermal conductivity (W m−1 °C−1)


Length (m)


Log mean temperature difference (°C)

\(\dot m\)

Mass flow rate (kg s−1)


Empirical shape factor


Nusselt number


Pressure drop


Perimeter of channel (m)


Prandtl number


Heat flow rate (W)


Volumetric flow rate (m3 s−1)


Reynolds number


Thermal resistance (°C W−1)


Temperature (°C)


Total number of channels


Velocity (m s−1)


Width of heat sink channel (m)


Center-to-center distance of two consecutive channels (m)

Greek symbols


Viscosity (kg m−1 s−1)


Density (kg m−3)


Volume fraction



Base fluid























  1. 1.
    Tuckerman DB, Pease RF. High-performance heat sinking for VLSI. IEEE Electron Dev Lett. 1981;2(5):126–9.CrossRefGoogle Scholar
  2. 2.
    Selvakumar P, Suresh S. Convective performance of CuO/water nanofluid in an electronic heat sink. Exp Therm Fluid Sci. 2012;40:57–63.CrossRefGoogle Scholar
  3. 3.
    Sohel MR, Khaleduzzaman SS, Saidur R, Hepbasli A, Sabri MFM, Mahbubul IM. An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3–H2O nanofluid. Int J Heat Mass Transf. 2014;74:164–72.CrossRefGoogle Scholar
  4. 4.
    Ho CJ, Chen WC. An experimental study on thermal performance of Al2O3/water nanofluid in a minichannel heat sink. Appl Therm Eng. 2013;50:516–22.CrossRefGoogle Scholar
  5. 5.
    Jajja SA, Ali W, Ali HM. Multiwalled carbon nanotube nanofluid for thermal management of high heat generating computer processor. Heat Transf Res. 2014;43:653–66.CrossRefGoogle Scholar
  6. 6.
    Peyghambarzadeh SM, Hashemabadi SH, Chabi AR, Salimi M. Performance of water based CuO and Al2O3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels. Energy Convers Manag. 2014;86:28–38.CrossRefGoogle Scholar
  7. 7.
    Rafati M, Hamidi AA, Niaser MS. Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids). Appl Therm Eng. 2012;45:9–14.CrossRefGoogle Scholar
  8. 8.
    Ali HM, Arshad W. Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO2 nanofluids. Energy Convers Manage. 2015;106:793–803.CrossRefGoogle Scholar
  9. 9.
    Ahmed HE, Ahmed MI, Seder IMF, Salman BH. Experimental investigation for sequential triangular double-layered microchannel heat sink with nanofluids. Int Commun Heat Mass Transf. 2016;77:104–15.CrossRefGoogle Scholar
  10. 10.
    Chein R, Huang G. Analysis of microchannel heat sink performance using nanofluids. Appl Therm Eng. 2005;25:3104–14.CrossRefGoogle Scholar
  11. 11.
    Ghasemi SE, Ranjbar AA, Hosseini MJ. Experimental evaluation of cooling performance of circular heat sinks for heat dissipation from electronic chips using nanofluid. Mech Res Commun. 2017;84:85–9.CrossRefGoogle Scholar
  12. 12.
    Naphon P, Nakharintr L. Heat transfer of nanofluids in the mini-rectangular fin heat sinks. Int Commun Heat Mass Transf. 2013;40:25–31.CrossRefGoogle Scholar
  13. 13.
    Ali HM, Arshad W. Effect of channel angle of pin-fin heat sink on heat transfer performance using water based graphene nanoplatelets nanofluids. Int J Heat Mass Transf. 2017;106:465–72.CrossRefGoogle Scholar
  14. 14.
    Khoshvaght-Aliabadi M, Sahamiyan M. Performance of nanofluid flow in corrugated minichannels heat sink (CMCHS). Energy Convers Manag. 2016;108:297–308.CrossRefGoogle Scholar
  15. 15.
    Zhang J, Diao Y, Zhao Y, Zhang Y. Experimental study of TiO2-water nanofluid flow and heat transfer characteristics in a multiport minichannel flat tube. Int J Heat Mass Transf. 2014;79:628–38.CrossRefGoogle Scholar
  16. 16.
    Nazari M, Karami M, Ashouri M. Comparing the thermal performance of water, ethylene glycol, alumina and CNT nanofluids in CPU cooling: experimental study. Exp Therm Fluid Sci. 2014;57:371–7.CrossRefGoogle Scholar
  17. 17.
    Arshad W, Ali HM. Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink using TiO2 nanofluid. Int J Heat Mass Transf. 2017;110:248–56.CrossRefGoogle Scholar
  18. 18.
    Arshad W, Ali HM. Graphene nanoplatelets nanofluids thermal and hydrodynamic performance on integral fin heat sink. Int J Heat Mass Transf. 2017;107:995–1001.CrossRefGoogle Scholar
  19. 19.
    Sakanova A, Keian CC, Zhao J. Performance improvements of microchannel heat sink using wavy channel and nanofluids. Int J Heat Mass Transf. 2015;89:59–74.CrossRefGoogle Scholar
  20. 20.
    Khoshvaght-Aliabadi M, Hassani SM, Mazloumi SH. Enhancement of laminar forced convection cooling in wavy heat sink with rectangular ribs and Al2O3/water nanofluids. Exp Therm Fluid Sci. 2017;89:199–210.CrossRefGoogle Scholar
  21. 21.
    Khoshvaght-Aliabadi M, Hassani SM, Mazloumi SH. Performance enhancement of straight and wavy miniature heat sinks using pin-fin interruptions and nanofluids. Chem Eng Process Process Intensif. 2017;122:90–108.CrossRefGoogle Scholar
  22. 22.
    Khoshvaght-Aliabadi M, Hassani SM, Mazloumi SH. Comparison of hydrothermal performance between plate fins and plate-pin fins subject to nanofluid-cooled corrugated miniature heat sinks. Microelectron Reliab. 2017;70:84–96.CrossRefGoogle Scholar
  23. 23.
    Bahiraei M, Hosseinalipour SM, Saeedan M. Prediction of Nusselt number and friction factor of water-Al2O3 nanofluid flow in shell-and-tube heat exchanger with helical baffles. Chem Eng Commu. 2015;202(2):260–8.CrossRefGoogle Scholar
  24. 24.
    Azizi Z, Alamdari A, Malayeri MR. Thermal performance and friction factor of a cylindrical microchannel heat sink cooled by Cu-water nanofluid. Appl Therm Eng. 2016;99:970–8.CrossRefGoogle Scholar
  25. 25.
    Zhai YL, Xia GD, Liu XF, Li YF. Heat transfer enhancement of Al2O3–H2O nanofluids flowing through a micro heat sink with complex structure. Int Commun Heat Mass Transf. 2015;66:158–66.CrossRefGoogle Scholar
  26. 26.
    Ijam A, Saidur R, Ganesan P. Cooling of minichannel heat sink using nanofluids. Int Commun Heat Mass Transf. 2012;39:1188–94.CrossRefGoogle Scholar
  27. 27.
    Xia GD, Liu R, Wang J, Du M. The characteristics of convective heat transfer in microchannel heat sinks using Al2O3 and TiO2 nanofluids. Int Commun Heat Mass Transf. 2016;76:256–64.CrossRefGoogle Scholar
  28. 28.
    Ambreen T, Kim MH. Effect of fin shape on the thermal performance of nanofluid-cooled micro pin-fin heat sinks. Int J Heat Mass Transf. 2018;126:245–56.CrossRefGoogle Scholar
  29. 29.
    Hashemi SMH, Fazeli SA, Zirakzadeh H, Ashjaee M. Study of heat transfer enhancement in a nanofluid-cooled miniature heat sink. Int CommunHeat Mass Transf. 2012;39:877–84.CrossRefGoogle Scholar
  30. 30.
    Lelea D. The performance evaluation of Al2O3/water nanofluid flow and heat transfer in microchannel heat sink. Int J Heat Mass Transf. 2011;54:3891–9.CrossRefGoogle Scholar
  31. 31.
    Izadi M, Shahmardan MM, Norouzi M, Rashidi AM, Behzadmehr A. Cooling performance of a nanofluid flow in a heat sink microchannel with axial conduction effect. Appl Phys A Mater Sci Process. 2014;117:1821–33.CrossRefGoogle Scholar
  32. 32.
    Ali HM, Sajid MU, Arshad A. Heat transfer applications of TiO2 nanofluids. In: Janus M, editor. Application of titanium dioxide. Rijekam: InTech; 2017.Google Scholar
  33. 33.
    Ali HM, Babar H, Shah TR, Sajid MU, Qasim MA, Javed S. Preparation techniques of TiO2 nanofluids and challenges: a review. Appl Sci. 2018;8:587.CrossRefGoogle Scholar
  34. 34.
    Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.CrossRefGoogle Scholar
  35. 35.
    Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43:3701–7.CrossRefGoogle Scholar
  36. 36.
    Corcione M. Rayleigh–Bénard convection heat transfer in nanoparticle suspensions. Int J Heat Fluid Flow. 2011;32:65–77.CrossRefGoogle Scholar
  37. 37.
    Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam. 1962;1:87–91.CrossRefGoogle Scholar
  38. 38.
    Kline SJ, McClintock FA. Describing uncertainties in single-sample experiments. Mech Eng. 1953;75:3–8.Google Scholar
  39. 39.
    Peng XF, Peterson GP. Convective heat transfer and flow friction for water flow in microchannel structures. Int J Heat Mass Transf. 1996;19(12):2599–608.CrossRefGoogle Scholar
  40. 40.
    Khoshvaght-Aliabadi M, Nozan F. Water cooled corrugated minichannel heat sink for electronic devices: effect of corrugation shape. Int Commun Heat Mass Transf. 2016;76:188–96.CrossRefGoogle Scholar
  41. 41.
    Khoshvaght-Aliabadi M, Sahamiyan M, Hesampour M, Sartipzadeh O. Experimental study on cooling performance of sinusoidal-wavy minichannel heat sink. Appl Therm Eng. 2016;92:50–61.CrossRefGoogle Scholar
  42. 42.
    Khoshvaght-Aliabadi M, Ahmadian E, Sartipzadeh O. Effects of different pin-fin interruptions on performance of a nanofluid-cooled zigzag miniature heat sink (MHS). Int Commun Heat Mass Transf. 2017;81:19–27.CrossRefGoogle Scholar
  43. 43.
    Khoshvaght-Aliabadi M, Sartipzadeh O, Pazdar S, Sahamiyan M. Experimental and parametric studies on a miniature heat sink with offset-strip pins and Al2O3/water nanofluids. Appl Therm Eng. 2017;111:1342–52.CrossRefGoogle Scholar
  44. 44.
    Chai L, Xia G, Zhou M, Li J, Qi J. Optimum thermal design of interrupted microchannel heat sink with rectangular ribs in the transverse microchambers. Appl Therm Eng. 2013;51:880–9.CrossRefGoogle Scholar
  45. 45.
    Xia G, Zhai Y, Cui Z. Numerical investigation of thermal enhancement in a micro heat sink with fan-shaped reentrant cavities and internal ribs. ATE. 2013;58:52–60.CrossRefGoogle Scholar
  46. 46.
    Li YF, Xia GD, Ma DD, Jia YT, Wang J. Characteristics of laminar flow and heat transfer in microchannel heat sink with triangular cavities and rectangular ribs. Int J Heat Mass Transf. 2016;98:17–28.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Muhammad Usman Sajid
    • 1
  • Hafiz Muhammad Ali
    • 1
    Email author
  • Abu Sufyan
    • 1
  • Danial Rashid
    • 1
  • Saad Ullah Zahid
    • 1
  • Wajih Ur Rehman
    • 1
  1. 1.Mechanical Engineering DepartmentUniversity of Engineering and TechnologyTaxilaPakistan

Personalised recommendations